y = sin(x)

Domain = (−∞ , ∞)
Range = [−1, 1]
Period = 2π
x-intercepts: x = kπ, k is any integer

y = cos(x)

Domain = (−∞ , ∞)
Range = [−1, 1]
Period = 2π
x-intercepts: x = ±π/2 + 2k π, k is any integer
GRAPHS OF BASIC TRIGONOMETRIC FUNCTIONS

y = csc(x) = \(\frac{1}{\sin(x)} \)

Domain = \{ x | x ≠ k\(\pi\), where k is any integer \}

Range = \{ y | y ≤ –1 or y ≥ 1 \}

Period = 2\(\pi\)

x-intercepts: None

y = sec (x) = \(\frac{1}{\cos(x)} \)

Domain = \{ x | x ≠ \(\frac{\pi}{2}\) + k\(\pi\), where k is any integer \}

Range = \{ y | y ≤ –1 or y ≥ 1 \}

Period = 2\(\pi\)

x-intercepts: None
GRAPHS OF BASIC TRIGONOMETRIC FUNCTIONS

\[y = \tan(x) = \frac{\sin(x)}{\cos(x)} \]

Domain = \{ \(x \mid x \neq \frac{\pi}{2} + k\pi \), where \(k \) is any integer \}

Range = (−\(\infty \), \(\infty \))

Period = \(\pi \)

x-intercepts: \(x = k\pi \), \(k \) is any integer

\[y = \cot(x) = \frac{\cos(x)}{\sin(x)} \]

Domain = \{ \(x \mid x \neq k\pi \), where \(k \) is any integer \}

Range = (−\(\infty \), \(\infty \))

Period = \(\pi \)

x-intercepts: \(x = \frac{\pi}{2} + k\pi \), \(k \) is any integer

Pinnacle Learning Lab, by Joanna Gutt-Lehr, last updated 1/2009