The forms that are presented in this eManual are available for download from the e-Builder website.
Table of Contents

1. Campus Master Plan
 (see Section 3.3 of Policies and Procedures) ... 03

2. Capital Improvements Program
 (see Section 3.4 of Policies and Procedures) ... 06

3. Project Delivery Method Guidelines
 (see generally Section 3.4 of Policies and Procedures) .. 10

4. Design Development Submittal Package Requirements
 (also known as Attachment D) *(see Section 3.9 of Policies and Procedures)* 19

5. Statement of Project Initiation
 (see Section 4.1 of Policies and Procedures) ... 20

6. Policy Regarding Participation By Consultants And Sub-Consultants
 In Project Programming *(see Section 4.3.1 of Policies and Procedures)* 21

7. Substantial and Final Completion Checklists
 (see Section 7.1.2 of Policies and Procedures) ... 22

8. Policy Establishing Criteria For Selection Of A Construction Project For Audit
 (see Section 7.4.7 of Policies and Procedures) .. 24

9. Final Report Form
 (see Section 8.1.5 of Policies and Procedures) ... 25

10. Warranty Letters
 (see Section 8.1.6 of Policies and Procedures) ... 27

11. Current Building Codes .. 28

12. Component Responsibilities in Projects with Outsourced Third Party Project Management (PM)) ... 29

13. P3 Process .. 31

14. Glossary of Acronyms ... 35
Campus Master Plan

(The following guidance supplements section 3.3 of the Policies and Procedures for Planning and Construction).

All TSUS construction projects will be created, controlled and executed through a Capital Improvements Program (CIP) that spans a six-year period looking into the future. All construction projects on this CIP will be products of an integrated planning process. That process will start with the Vision and Mission Statements of the individual Components and progress through their Strategic Plans to the resulting Campus Master Plan and ultimately to a set of projects of defined scope, cost and priority of need. The timing of design and construction of these projects will depend on the strength of their justification of need, tempered by the ability to fund the work.

Successful facilities master planning in higher education depends on having settled Academic and Strategic Plans in place as a foundation. The Component must know what it plans to teach and to how many students, according to an agreed business model before the need for specific facilities can be resolved. So, Components must, as a first step, adopt a Mission Statement and a Vision Statement and complete a Strategic Plan laying out how they will achieve these idealized outcomes over a period of time. Then they will undertake a Campus Master Plan effort to determine the facilities impacts of these plans. If a Component’s Vision, Mission and Strategic Plans change significantly, then the Master Plan should be changed accordingly.

Once the long-range pathway of the Component is set in place by its Strategic Plan the facilities implications can be determined. First, there are State-imposed facilities planning parameters that can be used to directly translate planned student/professor populations into the specific facilities needed to support them. Second, there are benchmarking data that show how other comparable Components are matching their teaching efforts to specific facilities infrastructures. Analyzed together, these sources will yield a list of basic facilities requirements needed to support any specific Strategic Plan.

All Components already maintain an inventory of existing facilities that can be subtracted out from the total requirements to yield a list of facilities deficiencies that must be supplied in order to implement the Strategic Plan. This listing of total requirements, that highlights existing deficiencies, is a good point of departure for the Master Planning effort.

The first phase of this effort should be an Investigations phase wherein the existing facilities are understood in their current context. This should include (but not necessarily limited to) analysis of the following:

- Natural and Built Systems
- History of the Campus and Place
- Building Use and Character
- Landscape and Vegetation
- Centers and Edges
- Surface Hydrology
- Geology and Landform
- Water and Sewer
- HVAC, Electric, Telecommunications, Data Communications, and other technology-related infrastructure
With the body of information gleaned from these investigations the conceptual planning of how the campus should be built out can begin.

The Preliminary Plan phase should establish guiding principles for campus development and conceptual ideas on how to proceed. For example, notions about what history may be there to preserve and how it should be handled, whether to adapt to existing topography or decide to alter it, how various areas of the campus relate to one another and/or how they should evolve independently, how to integrate into traffic patterns in the surrounding areas or how to isolate the campus from them, etc. This phase should culminate in an initial fixed “broad brush” idea of how to proceed in laying out structures, open spaces, circulation patterns, focal points, etc.

The Area Plans constitute the next phase of work. This effort should proceed to distinct internal areas (or precincts, or zones) within the campus to advance the basic ideas to a more detailed level. Discrete areas of the campus are explored at a greater scale of detail in order to test the technical feasibility and refine information generated in the Preliminary Plan phase. Building setbacks and massing, envelope criteria, engineering systems, pedestrian and vehicular circulation systems, service points, treatment of open space and entrances, general code compliance, and landscape composition are all addressed in this phase of work.

After the initial ideas are confirmed, a Design Guidelines phase is undertaken to establish a codified system to guide how the various areas of campus (and the campus as a whole) will stay architecturally unified. The Design Guidelines describe height and massing of buildings, disposition, primary entries and service areas, street and open space proportions and detailing characteristics of each. Building gross square footage and appropriate use, if determinable, are included. Interrelationships of buildings, streets, and open spaces to each other and to the overall plan are also articulated. Campus-wide architectural guidelines define architectural features, styles, and vocabulary of new facilities throughout the campus. Building fenestration, treatment of openings, organizational elements, and appropriate architectural materials are evaluated. Similar guidelines are developed for the grounds, landscaping, and architectural treatment of specific types of streets, public spaces, parks, and woodland environments. Likewise, outdoor lighting, walls and enclosure systems, plantings and site furnishings, signage and other elements that identify special spaces should be created.

The Final Plan phase consists of documents and presentations that aggregate the plan information prepared in the first four phases. This takes the form of a plan view showing existing and proposed buildings and open space and illustrates “before” and “after” perspective views. Also, included should be an implementation plan showing how the comprehensive development can be put in place over a period of time. Interrelationships between future projects should be made clear so that sequencing can be done correctly. Where the need for projects is directly linked to forecasted population growth on the campus, this connection should be made clear. To the extent scope, priorities, and pricing can be known, this information should be explicitly displayed. The direct interconnection between the projects on the Master Plan and the elements of progress on the Strategic Plan should be clearly identified (i.e. “this classroom building of 135,000 gross square feet will be needed to support a student..."
population of 15,000 which is currently forecast for Fall, 2022). The projects accepted by the Board of Regents on the CIP will be the projects that directly implement the Component’s approved Strategic Plan. The Master Plan will not only guide where each project will be built, it will also help to define what the project will cost (because of related work, design guidelines, etc.) and how it should be sequenced with other projects.

It is interesting, but not mandatory, to advance the master planning effort beyond the normal 10-year planning horizon so that ideas about “ultimate build out” can be examined. It may be useful to understand the absolute maximum population that a particular campus could support as this might influence how Strategic Plans are developed.

It must be recognized that Master Plans are conceptual platforms for a 10-year plan that should not be considered final or unchangeable, but is intended to serve as a philosophical guide to facility planning rather than a prescriptive document. It should also be noted that, as the age of a Master Plan increases, potentially significant adjustments to planned projects may be needed to meet the current conceptual goals of the Master Plan.

CMP Required Scope

All Campus Master Plans submitted to the Board of Regents should contain at least the following items:

- Demographic Analysis
- Programming/Space Projections
- Environmental Analysis (Natural/Built)
- Context Analysis (Local and regional history and background)
- Facility Use and Condition Assessment
- Historic Facility Survey
- Site Surveys
- Building & Land Use Plan (near term and long-range)
- Demolition or Deferred Maintenance
- Open Space and Landscape Plan
- Transportation and Parking
- Utilities Infrastructure
- Technologies Infrastructure
- Adjacent Land Use Analysis
- Land Acquisition and Disposition Strategy
- Environmental Impact Statement
- Safety and Security Plan
- Economic Impact Analysis
- Way-finding and Signage Plan
- Guidelines:
 - Buildings
 - Landscape
 - Infrastructure
 - Historic Structures
- Implementation Plan (with cost estimates and phasing plan)
The following guidance supplements section 3.4 of the Policies and Procedures for Planning and Construction.

The Capital Improvements Program (CIP) is TSUS’s plan to preserve and enhance its facilities assets infrastructure. It is a six-year, forward-looking plan for all repair, rehabilitation, alteration, and new construction projects.

In order for a project to be listed on the CIP, the sponsoring component must demonstrate how the project directly promotes achieving its approved Strategic Plan and justify its need based upon accepted planning parameters (i.e. the component is growing at a confirmed rate and this additional increment of classroom space is required to continue offering adequate instruction to the resulting student population). Further, unless an exception is justified, the project may only be listed on the CIP if it has been specifically accommodated on the Component’s Campus Master Plan.

Board of Regents’ approval of a CIP will constitute its authorization for the Chancellor to expend Component funds up to 4% of the estimated project cost to develop a formal program document, hire a project A/E, complete the Design Development phase of the project and produce a detailed cost estimate. Funds needed for these endeavors will be provided by the Component initially, but may be reimbursed when the project is approved for further development at this stage to the extent that outside funding is released for the project. If 4% proves insufficient to complete the Project Planning and Programming (PP&P) through Design Development the Chancellor may approve an exception to exceed that amount based on a specific request from the Component. To the extent consistent with the TSUS Rules and Regulations, the Chancellor may delegate the authority granted to him.

Component Process

While each Component’s process is unique, the process typically includes consideration of similar matters, such as:

- Review and evaluation of compatibility of a proposed project with the Component’s Vision and Mission Statements, its Strategic Plan, its Campus Master Plan, and the campus goals and targets;
- Review and evaluation of the condition of existing facilities;
- Identification of current and projected needs, based on a variety of data which may include projected enrollment or future growth projections, strategic initiatives, and technological innovation;
- Identification and evaluation of the underlying justification for the project using accepted facilities planning parameters;
- Identification and evaluation of funding sources and available resources; and
• Establishment of priorities, both for the necessary funds and among all the potential uses of the available funds;

As a general rule, each Component’s process includes input from appropriate individuals, councils or committees, such as faculty representatives, departmental representatives, administrative officers, and committees or councils charged with duties pertaining to space planning and facilities operations and maintenance. Project proposals and requests are typically reviewed and evaluated by executive officers or by councils and committees of executive officers with respect to various matters such as need, funding sources and priorities. Final Component review rests with the President of the Component with advice and assistance from the executive officers.

The results of the Component's process conducted to identify and evaluate projects will be used to submit proposed updates and changes to the CIP to the Vice Chancellor for Contract Administration (VCCA). Further refinement of the projects occurs as the CIP update process continues at the System Office level, as discussed in the following paragraphs:

Process for Updating the CIP

The CIP will normally be updated annually at the Board’s May meeting. The formal process begins on or about February 1 of each year, when the VCCA sends submission instructions to each Component representative describing schedule, process and forms required to gather all the information needed to update the CIP. The component is required to submit a completed Project Planning Form on e-Builder for each project (or aggregated group of projects) that it proposes to add to the CIP, and for each existing CIP project that it wishes to amend. The form requires the Component to provide detailed information on the proposed project to include the following:

• Identification of whether project is carried over from the previous CIP year, an amendment to an existing project or a new project;

• Explanation of amendment (if necessary);

• The CIP year in which the project should be built;

• Description of the project, including the gross square feet in the project and the proposed uses of the space;

• Detailed justification of the project, including an explanation of how the project serves the mission of the Component, an explanation of the need for the project and how it helps the Component implement its Strategic Plan, a discussion of options other than new construction or alteration, a discussion of the Texas Higher Education Coordinating Board’s evaluation criteria, and a description of the condition of existing facilities; (the System Office will often work with the Component to obtain complete information needed for the project’s justification)

• Description of the project site and location and confirmation of whether the site complies with the Campus Master Plan;
• Suggested project delivery method for the project, such as competitive sealed proposals, construction manager at risk or design/build;

• Identification of sources of funding for the project; if bond financing is proposed, identification of the source of revenue to pay the debt service and a five-year forecast of revenues and expenses for the project with a list of assumptions;

• Determination of whether enabling legislation for the project is required and, if so, whether the legislation has been adopted.

For each such project initially submitted, the total project cost for the project will be established by the VCCA for CIP purposes using the most recently updated median construction cost figures from the Texas Higher Education Coordinating Board for the project type; if, however, an independent cost estimate exists for the project, that estimate may be used to establish the project cost. For projects where neither an independent cost estimate nor a THECB median figure exists, the project cost shall be established by the component in consultation with the System Office. The cost figure will be updated at each annual CIP update.

The information submitted on the Project Planning Form serves as the basis for the evaluation of the project proposals. Because accuracy and completeness of the information are critical to the update process, the System staff will work with the Component staff on several levels during the initial submission stage to gather and refine information. System Staff will interact with each Component on site or by phone conference in order to ensure that the information and the projects submitted are technically and financially correct. When requested, the VCCA will provide expert consultant support to the Component at Component expense. The VCCA will adjust all cost estimates for escalation, based on escalation factors generally in use for public higher education projects in the State of Texas. Once the submissions are reasonably complete, the draft CIP will be forwarded to the Vice Chancellor for Academic Affairs (VCAA) and the Vice Chancellor for Finance (VCF) for review and comment.

Evaluation

The VCAA evaluates and reviews the proposed projects and may consult with each Component concerning the need for the proposed projects. Further refinements of the plan are made as a result of this review and evaluation that focus on:

• Whether there is sufficient justification for the project;

• Whether the project is consistent with the mission and strategic plan of the Component;

• Whether the proposed projects, about which the office had been previously advised, are included in the CIP. If projects have been omitted or removed, there is a dialogue about these actions;

• Whether the project funding is adequate and achievable. In particular, there is a review of the level of commitment of any proposed gift pledges on which the success of the project may depend.
The VCF reviews all proposed projects that are to be funded in part or in whole with System Bond proceeds. Such projects must receive a recommendation for allocation of debt proceeds from the VCF prior to being approved by the Board for inclusion in the CIP. Each request for formal approval from the Board to use the bond proceeds must be accompanied by an evaluation and recommendation from the VCF concerning the Component’s and the System’s ability to service the debt in question. The VCF’s evaluation includes three levels of debt capacity and repayment analysis: the System level, the Component level, and the project level.

The VCCA reviews all proposed projects with a particular view to the project scope and budget. As to each project, the VCCA shall advise the Planning and Construction Committee of the Board of Regents how the estimated cost of the proposed project compares with then current Coordinating Board average construction cost data for public higher education projects in the state of Texas.

Upon completion of review and revision by the VCAA, VCF, and VCCA, a revised draft of the proposed CIP is sent to the Component for review and any additional comment. The proposed CIP is then reviewed by the Chancellor. Upon approval by the Chancellor, the proposed CIP is scheduled for presentation to the Planning and Construction Committee of the Board and ultimately to the full Board for adoption.

Interim Updates

A Component may request that the CIP be updated by adding a new project at any regular or called meeting of the Board of Regents, but only if the new project is to be initiated in the current fiscal year. Otherwise, additions should be made as part of the annual CIP update. Modification or deletion of projects already on the CIP may be done only as part of the annual CIP update, unless special circumstances are present requiring an earlier modification.
Project Delivery Method Guidelines

For major capital projects, the Board of Regents and the System Office favor project delivery methods that allow the Construction Contractors and Construction Managers to participate in the project planning and design at the earliest possible date (i.e. Construction Manager at Risk and Design/Build). These allow for optimum pricing strategies, the most accurate and up-to-date estimating of project costs, timely and efficient Value Engineering and materials and methods selections, as well as optimum Scheduling and Phasing strategies. At the same time they emphasize wide-ranging competition in the marketplace on everything in the project except the General Conditions and Construction Management overhead and profit costs. When managed properly, these delivery methods can result in the lowest possible project cost and the shortest completion schedule, while including construction quality considerations not as readily available in other delivery methods.

Project delivery methods that involve direct negotiation with a single Contractor or Construction Manager of lump sum costs as in Job Order Contracting, or in increasing the scope of an existing lump sum contract via Change Order are not preferred methods of project delivery on major capital projects. These methods are useful for urgent minor work involving repetitive tasks that are easy to price.

There are no hard and fast rules for selecting project delivery methods for specific project types and opinions of individuals in the industry vary considerably. It is anticipated that the final decision on the delivery method for a specific project will have had input from the component institution and the System Office. However, the final decision should be made prior to starting design or, at the latest, during the early stages of design.

The following descriptions of alternative delivery methods are provided for consideration by the Component institutions as they are deciding their preferences for delivery methods on a given project:
Competitive Bidding or Design-Bid-Build (DBB)
Alternative Project Delivery Methods

Description: An architect/engineer (AE) prepares complete plans and specifications, from which contractors can bid a lump sum bid price. The Owner advertises and receives non-negotiable bids. Low bid is awarded the contract, unless it does not comply with requirements of the invitation for bid. Alternates, both additive and deductive, can be used to modify the scope, if included as part of the original bid documents.

Pros:
- AE selected independently based on qualifications
- Established traditional approach to project delivery
- Suitable for competitive bidding
- A/E directly works for owner
- Contractor selections simple to defend because they are based only on price.

Cons:
- Two contracts for owner to manage
 - Disagreements go through owner
 - Owner pays for gaps in plans and disagreements between AE and Contractor
- All parties have different agendas/objectives
- Low bid doesn’t result in final best value
- Bids over budget difficult to reduce costs
 - Creates significant delay
- No Contractor involvement in design to help provide cost effective solutions
- “Closed book” accounting, no savings pool available to owner as in CMR or DB.
- Most expensive delivery approach – long term
- Slowest project delivery
- Most litigious delivery process

Applications: If the owner wants the selection process to be simplified to a price only selection, and has ample time in the schedule to allow the design to be completed to 100% for competitive bids, then Design-Bid-Build is an appropriate delivery method.
Competitive Sealed Proposals (CSP)
Alternative Project Delivery Methods

Description: An architect/engineer (AE) prepares complete plans and specifications from which Contractors can propose a lump sum price. An RFP is publicly solicited, requesting bids for the construction work and other criteria such as qualifications, capabilities, capacity, reliability, and schedule. Proposals are evaluated on a best value approach which considers price as well as the other selection criteria. The contract can be awarded to other than the low bidder if the other criteria make it a better value to the owner. Also negotiation with the best value proposer is possible to reduce scope, price and time to bring the project within budget or the meet a required delivery date.

Pros:
- AE selected independently based on qualifications
- Contractor selection allows consideration of qualifications and capabilities
- Best value is selected rather than low bid
- Negotiation with best value proposer possible
- Allows contracting with highly qualified firm

Cons:
- Good objective procurement process required or selections will be hard to defend
- No Contractor input during design
- CSP slower than CM(at Risk) & Design-Build, must be designed to 100% complete documents before Contractor is engaged.
- Subcontractor selection not an open process as in CM(at Risk) and Design-Build
- Relationship less adversarial than DBB but more adversarial than CM(R) or Design-Build

Applications: Good for single projects where pre-construction services are not needed from the Contractor, the owner wants a lump sum price for construction, and the schedule will accommodate 100% design documents prior to engaging a Contractor.

Project Delivery Method Guidelines
Construction Manager at Risk (CMR)
Alternative Project Delivery Methods

Description: The AE has a direct contract with the owner as in the traditional process. CMR replaces the role of GC but with the advantage of being brought on board at the same time as the AE. The owner solicits for CMR’s through a two-step process. First is the RFQ which assesses the qualifications, capabilities, capacity and reliability of the construction firms who submit. The owner shortlists 3-5 firms to submit proposals and will normally interview all firms on this short list. The second step involves CMR’s responding to an RFP with their staffing and management plan for the project as well as a cost proposal that includes their fees and general conditions. The selected CMR works on a fee basis throughout the design phase working with the AE to provide cost effective solutions to keep the project within budget. At some point during the detailed design phase the CMR will establish a Guaranteed Maximum Price (GMP) which gives the owner a ceiling amount which will not be exceeded unless the project scope is increased. Once the GMP is established, construction can begin. (If GMP is unacceptable, the owner can terminate the CMR and bid out the construction.) While the GMP protects the owner’s upside risk, the contract is cost reimbursable and all costs are open book. As such subcontractors are publicly solicited and bid through the CMR. The CMR is at financial risk and totally responsible for performance of all the construction work under his contract.

Pros:
- AE selected independently based on qualifications
- More professional relationship with Contractor
- Works well with a knowledgeable owner/PM
- Earlier knowledge of costs through Guaranteed Maximum Price (GMP)
- Earlier involvement of Contractor possible which allows options for owner to select
- Allows owner to identify cost problems early in project
- More cost effective than low bid
- Open book contract – all savings below GMP returned to owner
- Bidding subcontract work open to owner – CM selects best value subs
- Delivers higher quality than low bid / same as DB
- Two contract system is less change for owner
- Project delivery faster than DBB

Project Delivery Method Guidelines
- Far less claims and litigation than DBB

Cons:
- Two contracts for owner to manage
 - Disagreements go through owner
 - Owner covers gaps in design but there are less than DBB
- Parties may still have different agendas/objectives
- CM input may not be included by designer
- Resistance among those not familiar with approach
- Not for those who rely first on contract clauses to get job done / It requires a partnering attitude

Applications: Provides good approach when (1) AE has been predetermined, (2)when early Contractor input is valuable, (3)when the quality of Contractor is important, or (4)for a program of multiple projects at one site. It has proven effective in achieving HUB goals and ensuring the use of high quality subcontractors.
Construction Manager – Agent (CMA)
Alternative Project Delivery Methods

Description: The AE has a direct contract with the owner as in the traditional process. CMA is generally an experienced constructor who works on a consulting fee basis throughout project generally being brought on board at the same time as the AE. The owner solicits for CMA’s through a two-step process similar to selecting an AE. The CMA works with the AE during the design phase to provide cost effective solutions and then like a general Contractor provides coordination and oversight in the field during construction. The CMA however does not hold any subcontracts. All trade contracts (subcontracts under other project delivery methods) are publicly solicited, bid, and contracted directly with the owner. The CMA is not at financial risk or responsible for performance of all the construction work. The owner holds multiple contracts for construction and is responsible for overall construction performance.

Pros:
- AE selected independently based on qualifications
- More professional relationship with Contractor
- Earlier involvement of Contractor possible which allows options for owner to select
- Allows start prior to completion of design

Cons:
- No protection for the owner of a Guaranteed Maximum Price (GMP)
- Multiple trade contracts is a liability burden for the owner.
- Two contracts for owner to manage
 - Disagreements go through owner
 - Owner covers gaps in design but there are less than DBB
- Parties may still have different agendas/objectives
- CM input may not be included by designer
- Different process in front end of project

Applications: Was used somewhat in Texas prior to the change of the project delivery law in 1997 to get a Contractor involved during the design phase of a project and to fast-track projects. It has generally been replaced by CMR and Design-Build, but it is still available for use.
Design Build (DB)
Alternative Project Delivery Methods

Description: Design-Build means design and construction under a single contract. A Design-Build (DB) is typically a team of an AE and Contractor with either or both firms (as a joint venture) holding the contract with the District. It offers single source accountability and has the advantage of the designer and builder working together through all phases. The District solicits for DB's through a two-step process. First is the RFQ which assesses the qualifications, capabilities, capacity and reliability of the Design-Build teams who submit. The District shortlists 3-5 teams to submit proposals and normally interview. The second step involves DB’s responding to an RFP with their staffing, design approach, and management plan for the project as well as a cost proposal that includes all fees (both design and construction) and general conditions. The selected DB works on a fee basis throughout the design phase using their in-house builders to provide cost effective solutions to keep the project within budget. At the end of design development the DB will establish a Guaranteed Maximum Price (GMP) which gives the owner a ceiling amount which will not be exceeded unless the project scope is increased. Once the GMP is established, construction can begin. (If GMP is unacceptable, the District can terminate the DB, have an AE complete the design and bid out the construction.) While the GMP protects the District’s upside risk, the contract is cost reimbursable and all costs are open book. As such subcontractors are publicly solicited and bid through the DB. The DB is at financial risk and totally responsible for performance of all the design and construction work under his contract.

Pros:
- Single point of responsibility and accountability to the owner – clear definition of risks
- One RFQ/RFP required vs. two for other systems
- More professional relationship with Contractor
- A/E and constructor on the same team providing unified recommendations to owner
- Works well with a knowledgeable owner/PM
- Earliest knowledge of firm costs through a GMP
- Allows innovations / options for owner to select
- Allows owner to identify cost problems early in project
- Open book contract – all savings below GMP returned to owner
- Bidding subcontract work open to owner – DB selects best value subs

Project Delivery Method Guidelines
- Least claims and litigation - Fastest project delivery system
- More cost effective delivery system than DBB - Quality is highest with DB (and CMR)

Cons:
- Must be decided on early in project - New learning curve for owners
- Owners pushed for earlier and timely decisions - Resistance among those not familiar with approach
- Not for those who rely first on contract clauses to get the job done / It requires a partnering attitude

Applications: Best where speed is the driving factor and the owner wants single source accountability for both design and construction.
Job-Order Contract (JOC)
Alternative Project Delivery Methods

Description: A job order contract is a standing arrangement with a general Contractor to provide construction services on an as-needed basis. The architect/engineer (A/E) is engaged to develop a design for the contemplated contract work. If the project is small enough, then no design work may be necessary. A job order Contractor is selected by issuing a RFP to qualified firms, which submit their experience and capabilities along with a multiplier coefficient. This coefficient is used to adjust the price of the work which is determined through application to an estimating guide such as Means. The Contractor with the best value of coefficient and other qualifications is selected as the job order Contractor. The job order contract usually has an annual upper limit which cannot be exceeded. The job order contract typically has option to be intended for multiple years if the JOC Contractor’s work is satisfactory. Each task order the JOC Contractor performs is defined by assembling all of the elements of work and pricing them through the estimating guide. The price the Contractor receives for the work is determined by multiplying the coefficient times the total price for the estimating guide.

Pros:
- Flexible system for small tasks under one contract
- Easy to price work based on estimating guide
-Eliminates expensive procurement process for small jobs
-Contracting system that allows quick response
-Reduces owners cost for solicitation and procurement

Cons:
- On certain task orders, pricing may be higher than if bid out separately
-In some cases, may be difficult to define all elements of work in estimating guide
-Limits distribution work to multiple small general contractors

Applications: This option is only appropriate for small projects with indefinite quantity and indefinite work schedule.
The following describes the submittal package requirements for Components requesting Design Development approval from the Board of Regents. Please note that this is only the information that is required to present the project to the Board of Regents for their approval and does not address what is required for a complete Design Development submittal.

1. **Architectural Renderings**: A complete set of Architectural Exterior Elevations reflecting a complete architectural design concept if exterior is altered by the project (by prior Component/System Office agreement). Submitted rendering shall be free of dimensioning and grid lines. Spaces should be clearly labeled with shading/coloring where possible to communicate any spatial adjacency relationships.

2. **Complete Set of Architectural Floor Plans** (90% complete*): Submitted drawings should be free of excessive dimensioning and grid lines. Spaces should be clearly labeled with shading/coloring where possible to communicate any spatial adjacency relationships.

3. **Enlarged Architectural Floor Plans**: Showing major core areas such as entryways, elevator lobbies, typical functional rooms (like classrooms), utility room layout, etc. (90% complete*).

4. **Complete Listing of All Major Building Systems**: Selection of every system is required (i.e. drilled caisson foundations, reinforced concrete frame, two-way slab construction, brick façade with precast elements, built up flat roof, chilled water/hot water HVAC fed from central plant, etc.).

5. **Detailed Cost Estimate**: Prepared by an independent estimator and/or construction manager, in CSI 35 Division format taken off the submitted Design Development drawings with very few Lump Sum/$$ per gross square foot estimates.

6. **Total Project Cost (TPC)**: A summary TPC breakdown by construction cost, design cost, moveable furnishings cost, other work costs miscellaneous costs, project contingencies and fees.

7. **Cost Comparison**: A summary showing the cost of this project compared to similar size and type projects recently built in the region under similar conditions, or a statement that no such comparable projects have been identified. Information regarding projected operating and maintenance costs of the facility or (in the case of renovation) the projected impact of the project on operating and maintenance costs.

8. **Environmental Impact**: Information regarding the projected environmental impact of the project.

9. **Certification**: By the Component and System Office that the submittal has been reviewed and found to be a complete and satisfactory Design Development package. (This will be based partially on informal certification by Architect/Engineer of Record for every discipline that the design is complete, all calculations are completed, all major equipment has been sized, etc., such that there is nothing left to do but provide details and prepare construction documents). This statement may be included with the Board Motion rather than the submittal package.

 * 90% Complete means the actual floor plans are frozen and will not change. There can be minor dimensioning missing and incomplete referencing to supporting detail drawings needed to complete the architectural design.
Statement of Project Initiation

This document is to be completed and submitted to the Vice Chancellor for Contract Administration as the first step in initiating the design and construction of a capital project.

Component: __________________

Project: ______________________

Project on CIP: Yes____ No____

1. Please describe in general terms why the Component has decided to initiate the project at this time.

2. Please describe any material changes to the description of the project on the current CIP.

3. Please describe the proposed sources of funding for this project, and the estimated amount of funding from each proposed source. Unless otherwise stated below, Component’s officer’s signature constitutes confirmation that these funds (with the exception of proposed TSUS debt funding) are available to pay project costs as they become payable.

4. What is the desired date for beginning design of this project?

__
Signature of authorized officer

__
Name

__
Title

__
Date
Policy Regarding Participation By Consultants And Subconsultants In Project Programming

This policy addresses the impact of Government Code section 2155.004 on the participation of design consultants and subconsultants in the programming process for TSUS facilities projects.

1. Any design professional or other person who participates in the preparation of a Request for Qualifications or Request for Proposal for TSUS or any of its component institutions with respect to a TSUS capital project and was compensated for doing so, directly or indirectly, is disqualified from being awarded a contract as a result of the procurement, and from being a subconsultant or subcontractor to a firm that is awarded such a contract.

2. A design professional or other person who participates in the programming effort, with or without compensation, with respect to a TSUS capital project is not disqualified from being awarded a contract as a result of the procurement, or from being a subconsultant or subcontractor to a firm that is awarded such a contract, solely because of such participation, provided all of the following are true:
 a. The programming effort does not produce a design document of any kind;
 b. The programming effort does not produce technical specifications for any equipment to be included in the project; and
 c. The programming effort does not involve the drafting or review of procurement documents.

3. Firms that program TSUS projects shall disclose to TSUS the identities of all firms that are compensated for participating in the programming effort.

Last revision: October 12, 2011 by TSUS Office of Contract Administration.
Texas State University System
Substantial Completion Checklist

Name of Project
Name of Component

PRIOR TO SUBSTANTIAL COMPLETION INSPECTION

☐ 1 Contractor's substantial completion punch list received
☐ 2 2 copies of contractor's marked-up as-builts drawings received
☐ 3 Preliminary copy of each instructional manual, maintenance and operation manual, all "in the field " training received
☐ 4 Preliminary copy of all written warranties and guaranties received
☐ 5 Notarized certification of no asbestos containing material or work received
☐ 6 Fire sprinkler test received(both above ground " A" form and under ground "U" form)
☐ 7 Boiler(s) accepted by Texas Department of Licensing and Regulation (TDLR)
☐ 8 Elevator(s) accepted by TDLR
☐ 9 Accessibility inspection report received from TDLR
☐ 10 Fire alarm certification received
☐ 11 Test and Balance deficiencies items identified (intent of building usage not jeopardized)
☐ 12 Outstanding commissioning items identified (intent of building usage not jeopardized)
☐ 13 List of names and vendors of obligatory vendors (subcontractors/suppliers) received
☐ 14 Final accounting of direct construction costs (CM@R projects only)
☐ 15 A/E Punchlist Received

Project Manager Date

Project Manager's Supervisor Date

PRIOR TO SUBSTANTIAL COMPLETION PAYMENT

☐ 1 *Executed Certificate of Substantial Completion with Pending items required to be completed/corrected
☐ 2 Corrected 2 Copies of Contractor’s Marked-up As-Builts Drawings Received
☐ 3 Corrected preliminary copy of each instructional manual, maintenance and operation manual, all "in the field " training received
☐ 4 Corrected preliminary copy of all written warranties and guaranties received
☐ 5 All attic stock received in good order
☐ 6 *Substantial Completion Form Submitted to System Office
☐ 7 *HUB-PAR submitted in good order
☐ 8 All general condition receipts verified
☐ 9 *A/E certified that payment application in good order
☐ 10 *Energy Conservation Design Standard Compliance Certification for New NonResidential Buildings (form on TSUS website)

* Provide back-up documentation for this item.

Project Manager Date

Project Manager's Supervisor Date

This form is used at two different times during the completion of the project. The first part “PRIOR TO SUBSTANTIAL COMPLETION INSPECTION” is to be used as a checklist of items that you should have received or the contractor has performed based on the contract documents, best practices and the requirements of the Uniform General Conditions at the time of the substantial completion walkthrough. If you have phases in a project or early occupancy you may have to adapt the form or add sheets as necessary. If for any reason items have not been performed or received from the checklist (outside of life safety issues), those items should be included in the outstanding items that are identified in the substantial completion punchlist created and attached to the certificate of substantial completion form. The Certificate of Substantial Completion is to be signed at the time and date of the substantial completion with the Architect and Contractor. Life safety items might be allowed to be a part of the substantial completion punchlist when those outstanding life safety issues are mitigated through other activities such as a fire watch or operators in elevator cars etc and under the approval of your risk management divisions, etc.

The second part “PRIOR TO SUBSTANTIAL COMPLETION PAYMENT” is to be used as a checklist of items that you should have received or the contractor has performed based on the contract documents, best practices and the requirements of the Uniform General Conditions prior to paying the contractor for Work up to the substantial completion phase of the project. See that Form for details.
Texas State University System
Contractor Final Completion Checklist

Name of Project
Name of Component

PRIOR TO FINAL COMPLETION INSPECTION

☐ 1 Contractor provided written notice that all items noted on the substantial completion list are corrected.
☐ 2 Contractor's corrected substantial completion punch list received
☐ 4 All final copies of each instructional manual, maintenance and operation manual, all "in the field " training received
☐ 5 All final copies of all written warranties and guaranties received
☐ 6 All items from TDLR Accessibility inspection report corrected
☐ 7 All test and balance deficiencies items corrected
☐ 8 All outstanding commissioning items corrected
☐ 9 A/E Punchlist Received

Project Manager Date

Project Manager’s Supervisor Date

PRIOR TO FINAL PAYMENT

☐ 1 *Written notice provided from ODR that final punchlist is complete and the Contract is fully satisfied
☐ 2 *Consent of Surety for Final Payment provided
☐ 3 *Final HUB-PAR submitted in good order
☐ 4 All Change Orders have been executed
☐ 5 Affidavit of all payrolls, bill for materials and equipment, subcontracted work and other indebtedness has been paid.
☐ 6 Provide all documentation establishing payment or satisfaction of all obligations noted in item 5 above
☐ 7 *A/E certified that final payment application in good order
 * Provide back-up documentation for this item.

Project Manager Date

Project Manager’s Supervisor Date

This is the second part of the form “PRIOR TO SUBSTANTIAL COMPLETION PAYMENT” is to be used as a checklist of items that you should have received or the contractor has performed based on the contract documents, best practices and the requirements of the Uniform General Conditions prior to paying the contractor for Work up to the substantial completion phase of the project. If you have phases in a project or early occupancy you may have to adapt the form or add sheets as necessary. The Certificate of Substantial Completion should already be fully executed and attached as part of the items that are required to be presented as back up to the payment application and this checklist. In the event that additional work will be added at the end of a project’s duration or substantial completion date, then fully execute those change orders with the additional days added prior to the substantial completion payment request as well as attaching an explanation for a partial release of funds relative to the original project substantial completion.

Final Completion Checklist
Policy: Criteria For Selection Of A Construction Project For Audit

The criteria for selection of construction projects for contract and performance audit are as follows:

1. **Delivery method:** Ordinarily, projects utilizing the construction manager-at-risk and design-build methods of project delivery will be preferred for audit.

2. **Project magnitude:** Projects with larger budgets will be preferred subjects for audit.

3. **Project complexity:** Complex projects will be preferred subjects for audit.

4. **Frequency of audit:** Projects will be selected for audit in a manner that reflects the comparative number of auditable projects completed at a particular component, in order that the frequency of audits at any one component is not disproportionate to the number of projects completed by that component.

5. **Other factors:** Other factors may be considered if, in the judgment of the System administration, they make it advisable for a particular project to be audited.

Issued: January 18, 2013.
Close-Out Procedures
(See Section 8.1.6 of Policies and Procedures)

Both the Component and the VCCA approve the final inspections and close-out of design and construction contracts. The Component shall...

- Notify the VCCA when Substantial Completion and Final Completion inspections are scheduled, and when all design services required are complete.
- Transmit a final audit report via the VCCA to the State Auditor’s Office.
- Resolve all outstanding contract changes, with no outstanding service or work items remaining.
- Provide the VCCA with executed substantial completion and final completion checklists, final payment checklist and the close-out matrix for Operation & Maintenance documents.
- Provide the VCCA with a Final Project Report to the Board per Section 6: Project Reporting & Oversight Reviews above.
- Conduct a one-year warranty inspection at the 11th Month and submit to the VCCA a warranty walk-through letter noting all deficiencies discovered and need of correction and the subsequent follow up warranty letter when all corrections have been made.
Project Description:
In three to four sentences provide a brief scope of work, name of A/E, name of contractor, the substantial completion date and the final acceptance date. Please adjust the lines and text boxes throughout this form to fully display your information prior to submission to the System Office.

Financial Information:

<table>
<thead>
<tr>
<th>Project Line</th>
<th>Approved BOR Budget</th>
<th>Commitments</th>
<th>Adjustments</th>
<th>Change Orders</th>
<th>Final Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost Limitation</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Contingency</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Architect/Engineering</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Owner Services</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Other</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Total</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
</tbody>
</table>

Liquidated Damages/Settlements:

Change Orders:

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Amount</th>
<th>Time Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: $ - 0

HUB Participation:

Percent: %
Amount: $0
Schedule Information:

<table>
<thead>
<tr>
<th>Project Time Line</th>
<th>Comments/Notes for Project Time Line:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Commencement Date</td>
<td>1/0/1900</td>
</tr>
<tr>
<td>Original Duration (days)</td>
<td>365</td>
</tr>
<tr>
<td>Change Order Adjustments</td>
<td>0</td>
</tr>
<tr>
<td>Liquidated Damage Adjustments (days)</td>
<td>0</td>
</tr>
<tr>
<td>Contract Completion Date</td>
<td>12/30/1900</td>
</tr>
<tr>
<td>Actual Completion Date</td>
<td>1/0/1900</td>
</tr>
<tr>
<td>Difference Between Contract</td>
<td>365</td>
</tr>
</tbody>
</table>

Building Performance/Sustainability Evaluation or General Comments:

Architect/Engineer Evaluation:

Contractor Evaluation:

Approval by All Authorities Having Jurisdiction:

This report is submitted by the Vice Chancellor for Contract Administration and was prepared based on information and evaluations supplied by the component.
Current Building Codes, Standards and Associations

National Fire Protection Association [Chapter 101 (2009 Edition) and all Applicable Chapters to any given project]

Texas Accessibility Standards (TAS)
Americans with Disabilities Act (ADA)
American Society of Civil Engineers (ASCE)
American Society of Mechanical Engineers (ASME)
American National Standards Institute (ANSI)
Underwriters Laboratories (UL)
Omega Point Laboratories (OPL)
American Concrete Institute (ACI)
American Society for Testing and Materials (ASTM)
American Wood Preservatives Association (AWPA)
Builders Hardware Manufacturers Association (BHMA)
Architectural Woodwork Institute (AWI)
Architectural Woodwork Manufacturers Association of Canada (AWMAFC)
National Environmental Balancing Bureau (NEBB)
Sheet Metal and Air Conditioning Contractors' National Association (SMACNA)
American Association of State Highway and Transportation Officials (AASHTO)
Air Conditioning Contractors of America (ACCA)
American Institute of Steel Construction (AISC)
American Public Works Association (APWA)
American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE)
American Wood Council (AWC)
American Welding Society (AWS)
International Association of Plumbing and Mechanical Officials (IAPMO)
International Code Council (ICC)
Institute of Electrical and Electronics Engineers (IEEE)
National Roofing Contractors Association (NRCA)
Occupational Safety and Health Administration (OSHA)
Plumbing-Heating-Cooling Contractors Association (PHCC)
Tile Council of North America (TCNA)
Component Responsibilities in Projects with Outsourced Third Party Project Management (PM)

See Policies & Procedures Manual section 2.2.3

Initial Phase

2. Maintain and understand contracts and any subsequent amendments to Architect/Engineer Agreements and Third Party Management Agreements.
3. Confer with the System Office regarding the selection of the PM and the respective PM team members who will support a specific project.
4. Assist and provide the PM with any owner provided information that is required by the project. This includes providing preliminary budget information, as-built information, campus standards, and campus keying protocols, geo-tech reports, surveys or other information retained by the campus that is beneficial to the project.
5. Introduction of the PM to municipalities, water districts and any other governmental or quasi-governmental agencies that is affected by a specific project
6. Introduction of the PM to the user groups for the specified project.
7. Provide administration protocols for the campus including emergency contact numbers as well as contacts for shut downs or hot work permits on campus. Provide introduction to intra-campus support function personnel.
8. Provide assistance in the establishment of office space for the PM.
9. Utilize e-Builder for all communication and documentation for the project.
10. Assist in other activities that would be beneficial to the PM.
11. Bring to the attention of the System Office any PM non-conforming activities pertaining to the PM contract.

Design Phase

1. Review Programming, Schematic Design, Design Development and Construction Documents for compliance with campus standards and equipment compatibility to existing equipment and controls used in the operation of the campus, and provide comments in a timely manner to prevent delay to the progress of completion. Review space/equipment for serviceability and code compliance.
2. Attend design meetings as requested by the PM.
3. Process pay applications approved by the PM for all vendors.
4. Assist in other activities that would be beneficial and requested by the PM.
5. Bring to the attention of the System Office any PM non-conforming activities pertaining to the PM contract.
Construction Phase

1. Identify campus personnel who will be inspecting work in accordance to the Owner’s Division 1 Specifications and the Uniform General Conditions.
2. Establish protocols for the inspection of cover up work with the PM and the contractor of record. Inspect as required by these protocols in a timely way to prevent delay in the progress of the construction implementation process.
3. Review and comment on Submittals sent by the PM.
4. Attend pre-construction and construction meetings as requested by the PM.
5. Participate in the Substantial Completion and Final Completion Walk-Throughs.
6. Process pay applications approved by the PM for all vendors.
7. Assist in other activities that would be beneficial and requested by the PM.
8. Bring to the attention of the System Office any PM non-conforming activities pertaining to the PM contract.

Close-Out /Warranty Phase

1. Attend all training activities with appropriate campus personnel.
2. Review Close Out and O and M’s and Warranty Materials for compliance with Campus Standards.
3. Notify contractor of record of any warranty issues. Log all notifications and resolution/remedies for all warranties issues.
4. Attend one year warranty walk-through.
5. Process pay applications approved by the PM for all vendors.
6. Assist in other activities that would be beneficial and requested by the PM.
7. Bring to the attention of the System Office any PM non-conforming activities pertaining to the PM contract.
Process for Public-Private Partnership (P3) Projects

1. **Applicability.** This document sets forth the detailed process applicable to the delivery of a P3 project as described in Section 9 of the TSUS Policies and Procedures for Planning & Construction (P&P).

2. **Determination of appropriateness of the P3 delivery method.** The determination that a project is appropriate for delivery as a P3 project shall be made by the VCCA with the concurrence of the Component President and the VCF. A preliminary determination shall be made at the time of inclusion of the project in the CIP, and shall be revisited at the time of project initiation. The determination shall be made in consideration of the following criteria:

 - Is the project sufficiently complex in terms of technical and/or financial requirements to leverage effectively private sector innovation and expertise?
 - If the required public funding is not currently available for the project, could using a P3 delivery method accelerate the delivery of the project?
 - Would the P3 delivery method help foster efficiencies through the appropriate transfer of risk over the project life-cycle? Is there an opportunity to bundle projects or create economies of scale?
 - Would the transfer of project risks and potential future responsibilities to the private sector on a long-term basis be of significant value to the System and the Component?
 - Does the project have the potential to generate revenue to partially offset the public funding requirement if necessary? Could the System pay for the project over time, such as through an Availability Payment, as opposed to paying the entire costs up front? An Availability Payment is a periodic payment conditioned on certain performance requirements.
 - To what extent would delivering the project as a P3 help free up funds or leverage existing sources of funds for other projects within the System?

3. **Project Initiation.** Inclusion of a project on the CIP, identification of a P3 as a source of funding for the project, and the determination described in Section 2 above, shall constitute preliminary authority for the project to proceed as a P3 solicited project. Unsolicited P3 projects (projects which are initially proposed by private sector entities without any solicitation by the System or a Component) will not be considered for initiation. Project initiation shall occur as provided in the P&P.

4. **Project Screening.** After a P3 project has been initiated in accordance with Section 3, the project shall again be evaluated in light of the criteria set forth in Section 2. This evaluation shall include the VCCA, the VCF, the Vice Chancellor and General Counsel, other System officers as appropriate, the Chief Financial Officer of the Component, and other Component officers as appropriate. In addition, the desirability and feasibility of delivering the project as a P3 shall be evaluated based on the following additional factors:

 - Effect on the public;
 - Probable market demand;
 - Stakeholder support;
 - Technical feasibility;
 - Financial feasibility;
 - Proposed financial structure; and
 - Legal feasibility.
5. **Prioritization.** If there are concurrent, multiple P3 projects requiring resources from the System, the proposed P3 project shall be prioritized by the VCCA in light of existing resources, current level of project development, project necessity, System and Component missions and priorities, and public funding requirements. In light of this prioritization, it may be necessary to delay a P3 project or, if feasible, to allocate additional outside resources to the delivery of the project.

6. **Project Development.** After a project has completed the Project Screening and Prioritization phases and has been selected for the TSUS P3 program, the next step is development of an Outline Business Case (OBC). The development of the OBC is generally the responsibility of the Component, with assistance as needed from the System Office. Depending upon the complexity of the project, the Component may wish to engage the services of a third party consultant to assist in this process. The OBC will be an internal document and will not be released as a part of the procurement process. The OBC should provide evidence of the following:
 - The project fits within the objectives and policies of the System and the mission of the Component;
 - The project provides the best value for the System and the Component;
 - The OBC should identify realistic and achievable options and quantify in monetary terms the costs and benefits of each option;
 - A sensitivity analysis shall be performed on the best value option to test its robustness;
 - The analysis shall result in a cost/benefit analysis (in net present value terms) and shall specify the risks inherent in the option; and
 - The VCCA may determine that a preliminary Value for Money analysis should be performed to compare the value to the System and the Component of the project as delivered through a P3 process with the value that would result from a conventional delivery method.
 - The project is attractive to the market, can be procured and is commercially viable;
 - The project is affordable, identifying the relevant funding sources and describing the impact on the Component’s budget; and
 - The project is deliverable under the TSUS Policies and Procedures for Planning and Construction.

7. **Approval to proceed to procurement.** The VCCA, in consultation with the VCF and other System officers as appropriate, shall review the OBC for compliance with Section 6. When the OBC has been found to be acceptable, the project will proceed to the procurement stage.

8. **Procurement.** Generally, a P3 project will undergo a two-step procurement process; however, the VCCA may determine that the two steps may be merged if in the best interest of the project.

 8.1 A Request for Qualifications is the first step to evaluate the qualifications of the respondents and determine a short list (typically three to five firms) to advance to the next step. The RFQ shall be prepared by the VCCA with assistance from the Component and issued by the System. The evaluation committee will be appointed by the VCCA, and will include participants from both the System Office and the Component.
8.2 If there are no qualified respondents, the VCCA may decide to cancel the procurement or re-procure the project at a later date.

8.3 The VCCA shall inform the respondents in writing whether or not they have been short-listed to proceed to the RFP stage, and shall make any other required notifications to other agencies and stakeholders.

8.4 The VCCA shall, with assistance from the Component, prepare a draft Request for Proposal. The VCCA shall collaborate with the TSUS General Counsel’s office in the preparation of a draft comprehensive agreement to accompany the RFP. The VCCA may choose to issue the documents in draft form to the short-listed respondents and/or hold proprietary one-on-one meetings to solicit feedback on the proposed RFP and the draft agreement. The VCCA will then issue the RFP in final form to the short-listed respondents.

8.5 The VCCA and other appropriate persons (with financial, technical and legal expertise) will evaluate responses to the RFP based on suitable criteria that have been established and documented prior to the opening of the proposals. The OBC will be updated with the information included in the bids received to develop a Full Business Case (FBC). The System shall reserve the right to conduct a Best and Final Offer (BAFO) process with some or all the short-listed proposers who meet certain criteria with respect to their initial bids.

8.6 Prior to recommending the selection of a preferred proposer to the Chancellor and the Board of Regents, the VCCA will cause to be performed a final Value for Money (VfM) analysis, taking into account all information that has been developed during the procurement process. The VfM analysis will be reviewed by the persons described in Section 8.5 to determine that the award of the P3 provides value-for-money to the System. This final VfM will be incorporated into the FBC for submission to the Board of Regents for approval.

8.7 The FBC shall be presented to the Chancellor for approval. Upon such approval, the FBC will be presented to the Board of Regents at a regular or called meeting for approval.

9. **Conditional Award.** Upon Board approval of the FBC, the VCCA makes a conditional award of the contract to the highest ranked proposer (“Preferred Proposer”) and begins negotiations with the Preferred Proposer on a final contract. The VCCA will then inform the other proposers in writing regarding the conditional award, and will make other notifications as necessary.

10. **Suspension or Termination of Negotiations or Procurement.** If at any point in the contract finalization process, the VCCA determines that the Preferred Proposer will not provide the System with the best value, the VCCA may suspend or terminate the procurement or choose to terminate negotiations with the Preferred Proposer and begin the process of finalizing a contract with the next highest ranking proposer. This process may continue until a contract is finalized or the procurement is terminated.

11. **Commercial and Financial Close.** When a contract is finalized, the project shall proceed to Commercial Close. If Financial Close is not simultaneous with Commercial Close, the project shall proceed to Financial Close upon the signing of the comprehensive, final
contract. The contract shall be administered by the VCCA, as Owner’s Designated Representative, and a representative of the Component as Owner’s Designated Site Representative.

12. **VCCA Discretion to Tailor Process.** This process is provided as a detailed outline of the expected process for TSUS P3 projects. The VCCA has the discretion to tailor the process to specific projects as may be necessary or desirable to achieve the goals of the System’s facilities program. This may involve streamlining the process for less complex P3 projects or adding additional process requirements for unique or more complex P3 projects.

13. **Cost.** All direct costs associated with design, prioritization, selection, procurement, delivery and subsequent operation of a P3 project are the responsibility of the component requesting the project. Such costs include, but are not necessarily limited to the following steps outlined in the TSUS Process for Public-Private Partnership (P3) Projects:

- determination of appropriateness
- project initiation
- project screening
- prioritization
- project development
- approval to proceed
- procurement
- conditional award
- suspension or termination of negotiations or procurement
- commercial and financial close
- litigation
Glossary of Acronyms Used in TSUS Planning and Construction Policy Documents

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/E</td>
<td>Architect/Engineer</td>
</tr>
<tr>
<td>AVCF</td>
<td>Associate Vice Chancellor for Facilities</td>
</tr>
<tr>
<td>CIP</td>
<td>Capital Improvements Program</td>
</tr>
<tr>
<td>CMA</td>
<td>Construction Manager-Agent</td>
</tr>
<tr>
<td>CMP</td>
<td>Campus Master Plan</td>
</tr>
<tr>
<td>CM@R</td>
<td>Construction Manager-at-Risk</td>
</tr>
<tr>
<td>CPM</td>
<td>Critical Path Method</td>
</tr>
<tr>
<td>CSI</td>
<td>Construction Specifications Institute</td>
</tr>
<tr>
<td>CSP</td>
<td>Competitive Sealed Proposals</td>
</tr>
<tr>
<td>D-B</td>
<td>Design-Builder or Design-Build</td>
</tr>
<tr>
<td>DBB</td>
<td>Design-Bid-Build</td>
</tr>
<tr>
<td>DD</td>
<td>Design Development</td>
</tr>
<tr>
<td>GMP</td>
<td>Guaranteed Maximum Price</td>
</tr>
<tr>
<td>HEAF</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>HUB</td>
<td>Historically Underutilized Business</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>JOC</td>
<td>Job order contract</td>
</tr>
<tr>
<td>NTP</td>
<td>Notice to Proceed</td>
</tr>
<tr>
<td>O&M</td>
<td>Operations and Maintenance</td>
</tr>
<tr>
<td>ODR</td>
<td>Owner’s Designated Representative (typically the Vice Chancellor for Contract Administration)</td>
</tr>
<tr>
<td>ODSR</td>
<td>Owner’s Designated Site Representative (component representative)</td>
</tr>
<tr>
<td>POC</td>
<td>Point of Contact (component representative for RFQ/RFP solicitations)</td>
</tr>
<tr>
<td>PP&P</td>
<td>Project Planning and Programming</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposals</td>
</tr>
<tr>
<td>RFQ</td>
<td>Request for Qualifications</td>
</tr>
<tr>
<td>THECB</td>
<td>Texas Higher Education Coordinating Board</td>
</tr>
<tr>
<td>TRB</td>
<td>Tuition Revenue Bond</td>
</tr>
<tr>
<td>TSUS</td>
<td>Texas State University System</td>
</tr>
<tr>
<td>VCAA</td>
<td>Vice Chancellor for Academic Affairs</td>
</tr>
<tr>
<td>VCCA</td>
<td>Vice Chancellor for Planning and Construction</td>
</tr>
<tr>
<td>VCF</td>
<td>Vice Chancellor for Finance</td>
</tr>
</tbody>
</table>