Discrete Mathematics Seminar

Time: Friday, 11 March 2016, 2:15 – 3:15 PM
Location: 237 Derrick Hall
Title: Solution to a Combinatorial Problem arising in Group Theory
Speaker: Dr. Eugene Curtin, Department of Mathematics

Abstract:

In a 2014 paper Thomas Keller conjectured that given any \(n \times \infty \) matrix of \(n \) element sets \((S_{i,j}) \), it is possible to construct an \(n \times \infty \) matrix \((x_{i,j}) \) satisfying the following conditions: (i) For all \(i \) and \(j \), \(x_{i,j} \in S_{i,j} \). (ii) The first \(n-2 \) elements in each row are distinct and never repeated later in the row. (iii) For all \(t \) the \(n \) sets \(\{x_{i,1}, x_{i,2}, \ldots, x_{i,t}\} \) are distinct.

He proved the \(n = 4 \) case in his paper, and we will outline a proof for the general case. We will also show the following:

Let \(X \) be a subset of the Boolean lattice on \([n] \) satisfying the following conditions: (i) \(\{i\} \in X \) for all \(i \in [n] \). (ii) For all \(A \in X \) with \(|A| \leq n-2 \) there exist elements \(i \neq j \) in \([n]-A \) such that \(A \cup \{i\} \in X \) and \(A \cup \{j\} \in X \). Then \(X \) contains \(n \) disjoint chains of length \(n-1 \).

We conjecture that if \(\{X_i\}_{i=1}^n \) is a collection of \(n \) subsets of the Boolean lattice on \([n] \) each satisfying (i) and (ii) above then there exist \(n \) disjoint chains \(C_i \) of length \(n-1 \) with \(C_i \subset X_i \).

This Boolean lattice conjecture implies a stronger version of the infinite matrix result. There is a combinatorial-game version of the conjecture which is stronger still.

No specialized background is needed to follow the arguments. The techniques are elementary, with the Max-Flow Min-Cut Theorem and the Konig Infinity Lemma making guest appearances.

This is joint work with Suho Oh.