III. DESIGN GUIDELINES

3.02 Sustainable Design Principles:

A. High Performance Campus: Texas State University is committed to building a campus of architectural, engineering and environmental excellence. The University will strive to demonstrate good environmental stewardship by achieving Green Building Council objectives and following other nationally recognized sustainability principles and practices to achieve a high performance campus cultivating a milieu for educational excellence. High performance campus building designs for new and existing buildings shall foster an enhanced sense of pride and excellence in higher education by creating efficient human scale facilities designed for a collaborative working and learning environment. Through careful planning and design, high performance new and existing buildings will contribute to producing a high performance educational environment that:

- Engages students in learning
- Leads and teaches by example
- Instills a sense of pride and ownership
- Fosters positive environmental stewardship
- Promotes a sense of safety and security for students, faculty and staff
- Promotes pedestrian-friendly, multi-modal transportation alternatives
- Builds connections between the University and the community

The high performance campus building designs shall implement energy conservation strategies, which save the University money, exhibit sound sustainability principles for students, and create enhanced learning environments. The University will lead and educate by example, demonstrating good environmental stewardship by adopting design standards and maintenance practices that reduce energy consumption, preserve environmental quality, and enhance the overall well-being of the university community.

B. Design Standard: The A/E shall use the USGBC Leadership in Energy and Environmental Design Rating System as a goal for the basis of design with an additional goal of achieving a silver rating, using the most appropriate and current rating tools. The primary purpose of establishing this design standard is to accomplish the commitment stated above. The University will pursue the prestige of obtaining a plaque, or a certification, only if it determines doing so does not adversely affect overall design, budget, occupancy and use of the project. The A/E shall include a LEED
Accredited Professional as a member of the consultant team for the duration of the project. The A/E shall develop a High Performance Project Plan for approval by the University during the preliminary plan phase of the project. The A/E team shall provide the University all the professional assistance necessary to meet its goal and plan.

C. The A/E shall develop a High Performance Project Plan for approval by the University during the preliminary plan phase of the project. The A/E team shall provide the University all the professional assistance necessary to meet its goal and plan. The sustainable building design guidelines are outlined as follows:

1. Exceed existing energy code to the maximum extent feasible while meeting building program and budget requirements;
2. Achieve lowest possible lifetime costs for new building;
3. Encourage continual energy conservation improvements in new buildings;
4. Ensure good indoor air quality;
5. Create and maintain a healthy environment;
6. Specify ways to reduce materials costs;
7. Consider long-term operating costs including the use of renewable energy sources.

The base elements to be considered during the sustainability design process are as follows:

Sustainable Sites
Prereq 1 Erosion & Sedimentation
Credit 1 Site Selection
Credit 2 Urban Redevelopment
Credit 3 Brownfield Redevelopment
Credit 4.1 Alternative Transportation, Public Transportation Access
Credit 4.2 Alternative Transportation, Bicycle Storage & Changing Rooms
Credit 4.3 Alternative Transportation, Alternative Fuel Refueling Stations
Credit 4.4 Alternative Transportation, Parking Capacity
Credit 5.1 Reduced Site Disturbance, Protect or Restore Open Space
Credit 5.2 Reduced Site Disturbance, Development Footprint
<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Stormwater Management, Rate and Quantity</td>
</tr>
<tr>
<td>6.2</td>
<td>Stormwater Management, Treatment</td>
</tr>
<tr>
<td>7.1</td>
<td>Landscape & Exterior Design to Reduce Heat Islands, Non-Roof</td>
</tr>
<tr>
<td>7.2</td>
<td>Landscape & Exterior Design to Reduce Heat Islands, Roof</td>
</tr>
<tr>
<td>8</td>
<td>Light Pollution Reduction</td>
</tr>
</tbody>
</table>

Water Efficiency
<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Water Efficient Landscaping, Reduce by 50%</td>
</tr>
<tr>
<td>1.2</td>
<td>Water Efficient Landscaping, No Potable Use or No Irrigation</td>
</tr>
<tr>
<td>2</td>
<td>Innovative Wastewater Technologies</td>
</tr>
<tr>
<td>3.1</td>
<td>Water Use Reduction, 20% Reduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Water Use Reduction, 30% Reduction</td>
</tr>
</tbody>
</table>

Energy & Atmosphere
<table>
<thead>
<tr>
<th>Prereq</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fundamental Building Systems Commissioning</td>
</tr>
<tr>
<td>2</td>
<td>Minimum Energy Performance</td>
</tr>
<tr>
<td>3</td>
<td>CFC Reduction in HVAC&R Equipment</td>
</tr>
<tr>
<td>1.1</td>
<td>Optimize Energy Performance, 20% New / 10% Existing</td>
</tr>
<tr>
<td>1.2</td>
<td>Optimize Energy Performance, 30% New / 20% Existing</td>
</tr>
<tr>
<td>1.3</td>
<td>Optimize Energy Performance, 40% New / 30% Existing</td>
</tr>
<tr>
<td>1.4</td>
<td>Optimize Energy Performance, 50% New / 40% Existing</td>
</tr>
<tr>
<td>1.5</td>
<td>Optimize Energy Performance, 60% New / 50% Existing</td>
</tr>
<tr>
<td>2.1</td>
<td>Renewable Energy, 5%</td>
</tr>
<tr>
<td>2.2</td>
<td>Renewable Energy, 10%</td>
</tr>
<tr>
<td>2.3</td>
<td>Renewable Energy, 20%</td>
</tr>
<tr>
<td>3</td>
<td>Additional Commissioning</td>
</tr>
<tr>
<td>4</td>
<td>Ozone Depletion</td>
</tr>
<tr>
<td>5</td>
<td>Measurement & Verification</td>
</tr>
<tr>
<td>6</td>
<td>Green Power</td>
</tr>
</tbody>
</table>
Materials & Resources
Prereq 1 Storage & Collection of Recyclables
Credit 1.1 Building Reuse, Maintain 75% of Existing Shell
Credit 1.2 Building Reuse, Maintain 100% of Existing Shell
Credit 1.3 Building Reuse, Maintain 100% Shell & 50% Non-Shell
Credit 2.1 Construction Waste Management, Divert 50%
Credit 2.2 Construction Waste Management, Divert 75%
Credit 3.1 Resource Reuse, Specify 5%
Credit 3.2 Resource Reuse, Specify 10%
Credit 4.1 Recycled Content, Specify 5%
Credit 4.2 Recycled Content, Specify 10%
Credit 5.1 Local/Regional Materials, 20% Manufactured Locally
Credit 5.2 Local/Regional Materials, of 20% Above, 50% Harvested Locally
Credit 6 Rapidly Renewable Materials
Credit 7 Certified Wood

Indoor Environmental Quality
Prereq 1 Minimum IAQ Performance
Prereq 2 Environmental Tobacco Smoke (ETS) Control
Credit 1 Carbon Dioxide (CO2) Monitoring
Credit 2 Increase Ventilation Effectiveness
Credit 3.1 Construction IAQ Management Plan, During Construction
Credit 3.2 Construction IAQ Management Plan, Before Occupancy
Credit 4.1 Low-Emitting Materials, Adhesives & Sealants
Credit 4.2 Low-Emitting Materials, Paints
Credit 4.3 Low-Emitting Materials, Carpet
Credit 4.4 Low-Emitting Materials, Composite Wood
Credit 5 Indoor Chemical & Pollutant Source Control
Credit 6.1 Controllability of Systems, Perimeter
Credit 6.2 Controllability of Systems, Non-Perimeter
Credit 7.1 Thermal Comfort, Comply with ASHRAE 55-1992
Credit 7.2 Thermal Comfort, Permanent Monitoring System
Credit 8.1 Daylight & Views, Daylight 75% of Spaces
Credit 8.2 Daylight & Views, Views for 90% of Spaces

Innovation & Design Process
Credit 1.1 Innovation in Design: Specific Title
Credit 1.2 Innovation in Design: Specific Title
Credit 1.3 Innovation in Design: Specific Title
Credit 1.4 Innovation in Design: Specific Title
Credit 2 LEED™ Accredited Professional