San Marcos is located in the Blackland Prairies region. San Marcos is located in the Guadalupe River Basin. San Marcos is located between the Edwards Plateau and the Blackland Prairies.
Texas State University-San Marcos is the largest of the nine components comprising the Texas State University System. It is the sixth largest university in the state of Texas and ranks among the leading higher education institutions statewide. With more than twenty million residents, Texas ranked as one of the ten fastest growing states in the nation, from 2000-2003. The state comprises 268,581 square miles.

Texas State is located in San Marcos, an evolving community situated along the growing Austin-San Antonio corridor. The IH-35 corridor is anchored on the north by the state capital of Austin, where population increased by nearly fifty percent during the 1990’s, and to the south by San Antonio, one of the top ten largest metropolitan cities in the country.

San Marcos

Located on the edge of the Texas Hill Country, San Marcos was founded in 1851 and is the county seat of Hays County. Its total area is 25.3 square miles and estimated 2004 population was approximately 44,769.

Texas State University-San Marcos adjoins historic downtown San Marcos which is listed in the National Register of Historic Places. At the heart of downtown is the restored Hays County Courthouse. Running through the center of town is the San Marcos River which originates from San Marcos Springs, the river and grounds of which comprise a large portion of the Texas State campus. Ranked among the most fertile rivers in the world, it is noted for its abundant and endangered aquatic plant and animal life.

Main Campus

As the University’s student population has grown from 303 in 1903 to 26,827 in 2004, the campus, too, has expanded. Old Main, a red-gabled Victorian building restored to its original grandeur, overlooks the campus and has served as a landmark since 1903. In 1979, after adding a number of classroom buildings and residence halls, the University purchased the former San Marcos Baptist Academy located west of the original campus.

The Campus Master Plan is focused specifically on the 475 acres which comprise the main campus of Texas State. Additional properties owned or leased by the University, but not included in the planning process, include: 42 acres on Highway 21 near Gary Job Corps; 459 acres of farm and ranch land at Centerpoint Road and IH 35 and McCarty Lane and Hunter Road; 125 acres at the University Camp in Wimberley; 5485 acres at the Freeman Ranch; as well as other acreage located in Hays County highlighted in maroon above. Not included in this planning process are the Round Rock Higher Education Center and the Texas Rivers Center at San Marcos Springs (Aquarena Center), though Aquarena is referenced in this document due to its main campus adjacency.

CLOSING THE GAPS

In late 2000, the Texas Higher Education Coordinating Board adopted a fifteen-year plan known as “Closing the Gaps” in order to reverse the declining proportion of Texans enrolling in higher education. This will have a correlated impact to the future economic and educational sustainability of the state. The plan specifically seeks to close gaps in student participation, student success, excellence, and research.

Texas State University-San Marcos has risen to the challenge of meeting these needs. The University has identified projections for enrollment increases on its main campus in San Marcos and through establishment of its new campus north of Austin – the Round Rock Higher Education Center. Texas State has a student-centered approach to education which places an emphasis on academic recruitment and retention, as well as a strong collaborative relationship with the business community leading to future opportunities for its graduates. Texas State identified national benchmarks for academic excellence and specific programs to expand its graduate and post-graduate research capabilities. The University also established a goal of becoming a Hispanic Serving Institution.
With the founding dates just half a century apart, Texas State University-San Marcos and the City of San Marcos have literally grown up together. The City and the University share many common bonds, not the least of which is a picturesque setting, complete with the crystal-clear San Marcos River. There is a shared sense of community, a commitment to education and a sense of history. Were it not for the good citizens of San Marcos, there would not be a Texas State.

Beginning in 1886, San Marcos hosted a Texas summer normal institute where educators gathered to study and earn advanced certification. Teachers received credit by passing exams or completing normal school work. This entitled them to teach more advanced students or to become administrators. Those who came to San Marcos for study saw its promise as a site for a permanent normal school to serve teachers in South Texas. In December 1892, a teachers’ institute meeting in San Marcos petitioned the legislature “to establish at least one more state normal in this state, to be located in southwest Texas.”

The Texas Legislature voted in 1899 that a normal school could be started in San Marcos if local citizens would furnish the land. The San Marcos City Council, meeting in special session on October 16, 1899, voted to give an 11-acre tract of land, plus several lots, to the state for the normal school campus. Official state approval of the Normal School was given in 1901.

Work on the first building, Main Building, began in 1902 in spite of construction difficulties caused by what appeared to be a deep cave in the hill. The normal school was ready for the 303 students and 17 faculty members who were there when Southwest Texas State Normal School opened its doors in 1903. Over the years, the Texas Legislature broadened the institution’s scope and changed its name, successively, to Southwest Texas State Normal College, Southwest Texas State Teachers College, Southwest Texas State College and, in 1969, Southwest Texas State University. Each name reflects the University’s growth from small teacher preparation institution to major multipurpose university.

As a result of the 2003 legislative session, the Governor signed another name-change bill and on September 1, 2003 the University’s name changed to Texas State University-San Marcos. President Denise M. Trauth said, “Our new name is a reflection of what we have become by building upon a foundation of excellence and hard work. Our reputation as a first-rate educational institution is long-standing. But that reputation has broadened in scope and strengthened over the years.” Texas State celebrated its new name at a ceremony on September 9, 2003, the 100th anniversary of the first day of classes at Southwest Texas State Normal School. The theme for the celebration was “Honor the Past, Claim the Future” which is also being used, fittingly, for the 2006-2015 Campus Master Plan.

Texas State’s original purpose was to prepare Texas public school teachers, especially those of the south-central Texas area. It became well known for
Although university officials have implemented enrollment management strategies, including rigorous academic standards that have helped control growth, Texas State's student population increased from 303 in 1903 to 26,827 in the fall of 2004. In the '60s, '70s and early '80s, the numbers grew by double-digit percentages year after year, taxing university resources and prompting stricter admission standards. The standards are now among the highest in the state for public universities.

The original 11-acre main campus has grown to over 475 acres, plus over 4,000 off-site acres of ranch land and a recreational camp have been added. Several major acquisitions have been made since 1903. In 1951 the 126-acre University Camp on the Blanco River was donated to the University. Established in 1897, and located near the headwaters of the San Marcos River, was the San Marcos National Fish Hatchery, the oldest federal fish hatchery west of the Mississippi River. In 1965, the US Fish and Wildlife Service donated the hatchery to Texas State, now a part of the main campus. Other acquisitions include the 79-acre former San Marcos Baptist Academy campus in 1979, the 3,485-acre Freeman Ranch in 1985, the 90-acre Aquarena Springs Resort in 1994, and the 101-acre Round Rock Higher Education Center campus in 2004. This Campus Master Plan focuses on the San Marcos campus only and does not address the University Camp, Freeman Ranch, Aquarena Center, or the Round Rock Higher Education Center campus.
CAMPUS DEVELOPMENT

1903
Southwest Texas State Normal School
Fall Student Enrollment: 303

1922
Southwest Texas State Normal College
Fall Student Enrollment: 743

1930
Southwest Texas State Teachers College
Fall Student Enrollment: 1,223

1950
Southwest Texas State Teachers College
Fall Student Enrollment: 2,013

1965
Southwest Texas State College
Fall Student Enrollment: 5,607

HISTORIC PRESERVATION SUMMARY

For the purposes of evaluating historic resources of Texas State, Volz and Associates conducted a survey of 50 buildings located within the central campus of the University that were constructed in or prior to 1965. These buildings were assigned a high, medium or low priority for preservation based upon criteria including historical designation, existing architectural features, significant notes about the building’s history, and information provided by the University. Preliminary data was provided by Lila Knight and the students of the Fall 2004 Historic Preservation class, and Nancy Nusbaum, Assistant Vice President for Finance and Support Services with Texas State.

Building upon the university-supplied survey, additional information was collected by the Volz team regarding site conditions and building materials. This collective information is intended to serve as an inventory of historic resource assets for the University. Each page of the survey contains at least one image showing the general appearance of the building. Additional images are added where needed to illustrate preservation concerns. Where applicable character-defining features and preservation concerns for each property are noted on the inventory. Future work to these historic resources should include restoration or reconstruction of character-defining features and should address preservation concerns in a timely manner.

The oldest and most important buildings were constructed in the early stages of the school’s development. They are ranked as the highest priority for preservation. These buildings are typically sited within the historic campus and have the ornamentation typical of buildings of their period. Architect Harvey P. Smith had a profoundly positive impact on the architectural character of the University during a post-war growth period of 1946-1956. Therefore, the high priority designation also includes intact buildings that Smith designed or remodeled. The high priority designation also includes buildings that have distinctive modern architectural character that is clearly associated with Texas State.

Many areas of the campus are also archaeologically sensitive or are already recognized as State Archaeological Landmarks, including many areas near the fish ponds, the Theatre Center and Bobcat Stadium. Ground-disturbing activity should be avoided in these designated areas and within other areas of the 100-year flood plain to the maximum extent feasible.

Medium priority buildings are university-related buildings that are between 40 and 50 years old, emerging as a historic property, and display cohesive design integrity. Single-family residential properties in the medium priority category are generally more than 100 years old, retain a high degree of architectural integrity, or have a direct relationship to the University. A medium priority designation makes these buildings worthy of preservation to the maximum extent possible.

Low priority buildings found on campus either do not retain their historic architectural integrity, do not have notable character-defining features, or do not have a strong link to the University.

The survey contains comprehensive information on 50 buildings. Each building has a sheet listing vital information about construction and remodeling, historical notes, and recommendations for rehabilitation. Specific recommendations related to the long-term preservation of the historic resources of Texas State are included in the Design Guidelines section of the Master Plan.
REPRESENTATIVE CAMPUS BUILDINGS

Alumni House
- Constructed: 1896
- Acquired: 1968
- Alumni Relations, Community Relations

Old Main
- Constructed: 1902
- Dean of Fine Arts and Communication, Department of Mass Communication, KTSW Radio

Psychology
- Constructed: 1918
- Renovation: 1980
- Department of Psychology, Department of Philosophy

Undergraduate Admissions Center
- Constructed: 1928
- Acquired: 1987
- Admissions and School Relations

Flowers Hall
- Constructed: 1939
- Additions: 1951, 1959, 1986
- Dean of Liberal Arts, Department of English

Psychology
- Constructed: 1918
- Renovation: 1980
- Department of Psychology, Department of Philosophy

Undergraduate Admissions Center
- Constructed: 1928
- Acquired: 1987
- Admissions and School Relations

Flowers Hall
- Constructed: 1939
- Additions: 1951, 1959, 1986
- Dean of Liberal Arts, Department of English

Falls Hall
- Constructed: 1968
- Student Housing

JC Kellam Administration
- Constructed: 1969
- Renovation: 1992
- Administration

Theatre Center
- Constructed: 1970
- Department of Theatre and Dance

The Tower
- Constructed: 1971
- Student Housing

Academic Services Building
- Constructed: 1977
- Dean of University College, Athletic Advising Center, Correspondence and Extension, College of Education, Food Service
COMMONS HALL  
Constructed: 1951  
Dining Facility, University Club, Faculty Offices,  
Testing Center

TAYLOR-MURPHY HISTORY  
Constructed: 1951  
Department of History

BRAZOS  
Constructed: 1951  
Center for the Study of the Southwest,  
Center for Texas Music History,  
Risk Management and Safety

ARNOLD HALL  
Constructed: 1962  
Student Housing

BUTLER HALL  
Constructed: 1965  
Student Housing

ALKEK LIBRARY  
Constructed: 1990  
Library, Instructional Technologies Support,  
Student Learning Assistance Center

LBJ STUDENT CENTER  
Constructed: 1997  
Student Center, Bookstore, Counseling Center,  
Auxiliary Services, Student Organizations,  
Cafeteria Services, Dean of Students, Disability  
Services, Multicultural Student Affairs

ROY F. MITTE TECHNOLOGY/PHYSICS  
Constructed: 2003  
Department of Engineering and Technology,  
Department of Physics

SAN JACINTO HALL  
Constructed: 2004  
Student Housing

MCCOY HALL  
Constructed: 2006 (projected completion)  
McCoy College of Business Administration
The physical plant could not be improved during the Depression and World War II. It was recognized that the end of the war would result in large numbers of students enrolling and there would not be enough buildings to take care of the expected increases. All of these concerns resulted in the need for a master plan to meet the requirements of an expanding campus. In 1942, the Board of Regents approved President Flowers’ request to employ an architectural firm, Harvey P. Smith and Associates of San Antonio, Texas, to aid in immediate and long-range planning and determine the type of architecture that should be used. Between 1944 and 1966 there were modifications to the plan as the campus expanded outwardly from the central core, but essentially the basic principles of that plan were followed.

Mr. Smith, who studied Latin-American architecture and played a major role in the restoration of many of the missions around San Antonio, aided in the remodeling and construction of 76 buildings on campus. A conscious effort was made to follow one type of architecture throughout, modifying it in some cases to meet specific requirements and to add some variety to the buildings. In general, the new buildings carried out the Spanish Colonial motif to mirror the history of the Spanish discovery of the river, and the near-identical look of the hills, limestone, and native vegetation to that of similar parts of Spain. A major part of the plan was taking existing buildings, the Art Building and Flowers Hall, and adding Spanish-style elements to match the new planned buildings. Hence, gables, arches, columned porticos, hand painted Mexican floor tiles, and wrought iron elements were retrofitted to these buildings.

In 1958, a land acquisition was approved by the Board of Regents. As a result of the acquisition of the National Fish Hatchery, a long range planning study was approved by the Board of Regents in 1965 for the construction of the Speech/Drama building, Aqua Sports, Women’s Residence Tower, Classroom/Office Building, and the expansion of the Student Center.

The firm of Lockwood, Andrews and Newnam prepared the 1972-1977 and 1977-1982 Campus Master Plans for the University. The first plan called for a split-level three-building Education Center, Art Building and Student Center complex, a multi-purpose dome-topped sports arena (which never materialized), an addition to the University's Industrial Arts Building, expansion of the campus power plant, the construction of pedestrian walkways, and the development of additional hard-surface parking areas on campus. Linking the mini-dome and a solution to commuter parking problems, plans were to construct a 2,000-car commuter parking lot near the dome, a major pedestrian overpass walkway that would link the dome area with the center of the campus, and the removal of the automobile from campus. The first plan also called for the low profile of buildings to preserve the view of Old Main from downtown and from other sections of the campus. The materials for the new buildings would respect existing structures in color and texture. Sand colored bricks were selected for the exterior and natural red Mexican tile was chosen for use on all pedestrian malls, recalling the existing tile roofs and the Spanish influence of the campus’ early architecture.

The 1977-82 Plan recommended adding 500,000 square feet of classroom space, including eleven new structures and the renovation of many other campus facilities. Several considerations guided the development of the plan: a need for additional classroom and office space, the desire to preserve the central campus academic core, removing vehicular traffic from the campus (except for service and emergency vehicles), removing more parking, building landscaped pedestrian walkways, and preserving as much of the open green space as possible. These considerations resulted in the second plan calling for a high rise approach on several buildings to preserve current open green space and the closure of LBJ, Rox noske, Old Main and State streets. Also included in the plan was a study regarding the purchase of the San Marcos Baptist Academy.
The 1984-1990 Campus Master Plan, prepared with the assistance of Spencer Associates, Inc. of Austin, Texas, provided general guidelines for development of the campus. The University's high enrollment growth rate, its low ratio of square-foot-per-student, the hilly terrain of much of the campus, and the age of many campus buildings were primary factors of the Master Plan. The plan identified the need for eleven new campus buildings and renovation of nine existing structures. University administration at that time wanted a plan that would include efficient, cost-effective, long-term plan design, and harmonious building and landscape design throughout the campus.

Aesthetic satisfaction and pride in tradition were also planning considerations, as were protection of the environment and flexibility. It had been decided that the new university library would be built on the western periphery of the academic core since the land was largely undeveloped and contained many building sites. Early deliberations resulted in the decision to plan for a direct westward expansion with a new mall corridor rather than establish a separate academic area west of Comanche. Along the mall corridor, buildings, including a Human Resource Center and the Learning Resources Center, were sited in an orderly progression toward the University Center. The extension of the academic mall was the unifying concept of the 1990 Plan.

Planned botanical displays were to feature vegetation native to the diverse ecological zones in the state. In conjunction with the Lady Bird Johnson Natural Wildflower Research Center these displays would provide for ongoing research opportunities exploring the uses of Texas natural vegetation. A major goal of the plan was to reduce conflicts between pedestrians and automobiles and to facilitate pedestrian movement within the interior of the campus. An automobile circulation concept was expressed in the plan, calling for the realignment of the intersection of Sessom Drive, Academy Street and Moore Street. Two parking structures and three additional surface parking lots were proposed to address the parking needs.

The 1990-2000 Plan was prepared by the architectural firm of Pierce Goodwin Alexander and Linville. Proposed facilities were outlined in a two-phase plan. Phase I included the construction of five new buildings, fourteen major renovations and ten minor renovations. Improvement of three recreational fields and four major demolitions were also proposed. Phase II included three new educational and general buildings and one new auxiliary structure.

With the 1995-2005 Plan, the University moved to a ten year review and update cycle. The plan prepared by JPJ Architects, Inc. of Dallas, Texas, pictured above, included a comprehensive Facilities Analysis and ADA Survey Report. Fundamental design concepts incorporated in the plan included reinforcing the existing campus fabric with the incremental addition of necessary academic and support space, strengthening vehicular circulation at the campus perimeter while reinforcing the pedestrian environment within, and creating a sense of arrival on campus at major entry points. The plan preserved open space as a valued asset to the quality of student life and put forth the premise that parking lots do not qualify as open space. The plan promoted the knitting together of living and learning relationships with the renovation of close-in housing. It called for the expansion of the pedestrian mall concept, the continuance of multiple entry conditions to disseminate traffic, and the location of control booths and information services.

Within the context of the Landscape Master Plan prepared in 1980 by Schrickel, Rollins and Associates, Inc., it was recommended that the campus core have a formal landscape while the east and west ends would have an informal, natural treatment. Plantings were to provide both clearly developed intimate spaces and broad indigenous areas sympathetic to climatic conditions of the region. Some 454,477 square feet of new educational and general construction was proposed. Due to a leveling in demand for additional residential space on campus, new residence halls, recommended in previous master plans for the west campus, were put on hold until the end of the planning period. Expanded recreational use of the west campus was encouraged instead.
EXISTING CONDITIONS

- Campus Buildings
- Campus Parking Garages
- Context Buildings
EXISTING LAND USE

- Grant
- Instructional
- Administration
- Residential
- Facilities
- Athletic
- Dining
- Recreation
- Student Service
- Aquarena
- Lease
- Parking Garages
Texas State has identified two basic planning assumptions to accommodate its future enrollment growth. These assumptions will directly impact facilities space projections over the next ten years. First, the San Marcos campus shall accommodate a future student body of no greater than 30,000 students unless there is a fundamental infrastructure change in San Marcos. Second, Texas State graduate enrollment will increase (18% of the total SCH by 2015), as resources permit, consistent with the University’s desire to be a Doctoral Intensive university.

### HISTORICAL ENROLLMENT TREND AND GROWTH PROJECTION (Figure 1)

Projections are based on historical data and departmental growth scenarios and are aggregated to the University’s total enrollment. Departmental growth scenarios were provided by individual university departments and were subsequently revised to more closely align with the campus enrollment planning assumptions. During the ten-year planning window, departmental enrollment data and projections will be monitored and adjusted to achieve the enrollment planning objectives.

Total student enrollment at both the main campus and Round Rock Higher Education Center in 2015 is projected to be approximately 34,264. This is 7,058 students more than the 2003 base year, which yields an approximate annual growth rate of 2.5% and a cumulative growth rate of 50% for the next 12 years. The University has experienced significant growth of more than 5.0% over the last several years. Historically, the annual growth rate over the last 20 years averages out to 2.4%.

Using this approach, enrollment on the main campus is projected to be 33,280 in the year 2015, the same growth percentage as the overall total student enrollment. Round Rock Higher Education Center (RREHC) is not included in this figure.

### PROGRAMMING METHODOLOGY (Figure 2)

The Texas Higher Education Coordinating Board (THECB) Five-Factor Projection Model is used as a base model. This model is used to project Education and General (E&G) space for state institutions of higher education. E&G space consists of five types of spaces: Teaching, Library, Research, Office, and Support. Teaching space is predicted using the level and program areas of an institution’s funded semester credit hours taught. Library space is predicted using the number of faculty, students, approved programs, and library holdings. Research space is predicted using research expenditures and student semester credit hours. Office space is predicted by the number of faculty, non-faculty, and current funded E&G expenditures. Support space is a percentage of the total predetermination for all of the other space factors.

### PROJECT ASSUMPTIONS

1. The University anticipates that the total student enrollment will be 30,000 on the San Marcos campus by the year 2015. Each department or office projects its growth based on the Strategic Plan or historical growth trends. The total projected enrollment is the sum of individual departmental growth. Round Rock Higher Education Center (RREHC) is not included in this Master Plan.

2. As resources permit, graduate enrollment should increase to 18% of the total semester credit hours by the year 2015, consistent with the University’s desire to become a Doctoral Intensive institution. Undergraduate program growth may be controlled; however, the University is committed to undergraduate education consistent with Texas State’s mission to serve the needs of the state.

3. The University plans to increase the number of faculty members to serve its students. The goal is to be in the middle of the faculty-to-student ratios of Texas public universities. (The student-to-faculty ratio for Texas State was approximately 23.7 in the fall of 2003, while the average ratio of Texas public universities was approximately 17.5.)

4. As the University moves toward a Carnegie Doctoral Intensive designation, research will remain an integral part of the institution. Extramural funding for research is expected to grow with annual expenditures increasing from $20 million to $100 million. Note: The reportable portion of research expenditures used in the Texas Higher Education Coordinating Board (THECB) Five-Factor Space Model is approximately $10 million. Therefore, approximately $50 million is assumed to be the THECB Model’s reportable amount by the year 2015 for this report.

### SPACE PROJECTION SUMMARY (Figure 3)

Departmental projections for both the undergraduate and graduate enrollments were not adjusted in order to achieve assumption 1 and 2 resulting in projected student enrollment in 2015 to be 33,280 on the main campus.

The total assignable area in Education and General (E&G) space requirements on the main campus is projected to grow by 71% between 2003 and 2015. Research space expanded significantly because of the strategic increase in research activities.

The growth between 2003 and 2015 includes the current space deficiency. It is a difference between the current space and projected space for 2003, which is a total of approximately 400,000 assignable square feet. This deficiency includes the main campus only.

The total assignable area in non-E&G space requirement is projected to grow by 21% for 2015, while the grand total area is projected to grow 50%.

Gross area is calculated by a percentage. That is known as “building efficiency.” Spaces included between the gross and assignable areas are mechanical space, restrooms, hallways, etc. The current building efficiency ratio is 57%. The ratio for future space is assumed to be 65% as a common percentage for university buildings.
E&G Space Per Student FTE Comparison Doctoral Universities (Figure 4)

The bar-chart compares the E&G space per student FTE among universities categorized as Doctoral Universities according to the Coordinating Board. Texas State currently has the smallest total E&G space per student FTE, 77 assignable square feet (ASF). The area is projected to be 106 ASF by the year 2015, if all space growth is accommodated. It is still slightly lower than the current average among other universities of 112 ASF or predicted average of 116 ASF. Texas A&M University-Kingsville, Texas Woman’s University and Texas A&M University-Commerce are currently exceeding the formula predicted space.

E&G Space/Student FTE Comparison Emerging Research Universities (Figure 5)

This chart compares the E&G space per student FTE among Emerging Research Universities grouped by the Coordinating Board. Texas State currently has the second lowest square footage among the group. The current average space among the group, excluding Texas State, is 99 assignable square feet (ASF). The predicted average is 124 ASF.

Hypothetical Total Campus Area Projection (Figure 6)

The hypothetical area required for the year 2015 can be calculated by using general space parameters. Three scenarios are presented for the purpose of campus growth evaluation. These scenarios do not consider physical planning issues, and the actual achievability has yet to be verified.

In all three scenarios new buildings are expected to be an average of 3-stories or higher. Open spaces are kept above 200% of open-space-to-building footprint ratio, which is slightly more spacious than the current average in the main campus area.

Note: Information was provided by Facilities Programming & Consulting, LTD.
San Marcos’ Roadway Network

San Marcos’ roadway network is comprised of one interstate and several state highways that provide the basic framework for transportation within the area. The types of roads within the transportation network range from two-lane local roads to a six-lane interstate highway. A transportation master plan has recently been completed for the City of San Marcos. It documents proposed roadways, bike lanes, and sidewalks.

Major Roadways Within San Marcos

A description of the interstate and major state highways in San Marcos is provided below.

1. IH 35 is the interstate highway serving the area. It is a controlled access facility oriented approximately north-south through the city. IH 35 is a four-to-six-lane divided roadway with a posted speed limit ranging from 55 to 70 miles per hour (mph). Commercial land uses line the IH 35 corridor. Therefore, effort would be required to expand the facility.

2. SH 80 is a four-lane roadway that intersects IH 35 and travels east toward Luling. SH 80 serves as a north-south corridor for traffic to and from downtown San Marcos. Various University buildings, residential areas, and commercial land uses are adjacent to this roadway.

3. SH 21 is a four-lane roadway that begins at SH 80 on the west side of IH 35. It has a two-lane to four-lane cross-section. It serves as a north-south corridor for traffic to and from downtown San Marcos. Various University buildings, residential areas, and commercial land uses are adjacent to this roadway.

4. The city has a two-way freeway interchange at IH 35 and travels east toward Luling. SH 80 serves as a north-south corridor for traffic to and from downtown San Marcos. Various University buildings, residential areas, and commercial land uses are adjacent to this roadway.

5. SH 21 is a four-lane roadway that begins at SH 80 on the east side of San Marcos and continues north toward Bastrop County. The posted speed limit is 65 mph.

6. Loop 82 is a four-lane roadway with posted speeds ranging from 35 to 45 mph. Loop 82 begins approximately 1.4 miles northeast of downtown San Marcos at IH 35, then travels through San Marcos to rejoin IH 35 south of downtown. On the northern end it serves as an access point to two important destinations: Aquarena Springs and Texas State University-San Marcos.

7. Loop 82 is a four-lane roadway west of San Marcos. It provides an important link between IH 35 and the center of downtown. It also connects San Marcos to Wimberley. Commercial land uses line the RM 12 corridor. Therefore, effort would be required to expand the facility.

8. Several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.

Roadways Surrounding Texas State University-San Marcos

The San Marcos roadway network provides direct access to Texas State via a number of routes. These routes include University Drive, North LB Drive, North Bishop, RM 12, Comanche Street, and Sessom Drive. Main access points to the campus include Aquarena Springs Drive from IH-35, Hopkins Street from IH-35, and Guadalupe Street from downtown San Marcos.

A description of the roadways providing direct access to the Texas State campus follows. The classifications were documented within the City of San Marcos’ Thoroughfare Plan approved by the San Marcos City Council on October 11, 2004.

1. University Drive is classified as a minor arterial and has a four-lane cross-section. University Drive forms the eastern and southern boundaries for the main building portion of campus.

2. North LB Drive is classified as a minor arterial and has a two-lane cross-section. It provides an important link from northwest San Marcos to the University. North LB Drive is not continuous through the Texas State campus, but dead ends in both the northbound and southbound directions.

3. North Bishop Drive is classified as a minor arterial from Hopkins Street to Franklin Street and as a major arterial from Franklin Street to RM 12. It has a two-lane to four-lane cross-section.

4. Comanche Street is classified as a major arterial and has a two-lane to four-lane cross-section. It serves as a north-south corridor for traffic to and from downtown San Marcos. Various University buildings, residential areas, and commercial land uses are adjacent to this roadway.

5. Sessom Drive is classified as a major arterial and has a four-lane cross-section. It forms the northern boundary of the campus. Various University buildings and commercial land uses line the roadway.

6. RM 12 is a four-lane roadway west of San Marcos. It provides an important link between IH 35 and the center of downtown. It also connects San Marcos to Wimberley. Commercial land uses line the RM 12 corridor. Therefore, effort would be required to expand the facility.

7. There are several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.

8. Several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.

9. There are several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.

10. There are several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.

11. There are several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.

12. There are several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.

13. There are several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.

14. There are several major city streets that run throughout San Marcos. These roads vary in cross-section from two to six lanes. These roads include Sessom Drive, Comanche Street, Hopkins Street, Guadalupe Street, and Aquarena Springs Drive. Most of these streets have a mix of commercial and residential land uses within the City. Those roadways located in the downtown area and near Texas State University-San Marcos have limited existing pavement for expansion. In addition, historical buildings, environmental features, and other landmarks make it difficult to expand many of these roadways facilities.
the Austin Bergstrom International Airport. The Austin Commuter route has a daily ridership of approximately 180 people.

**ELECTRIC SHUTTLE**

Texas State University-San Marcos purchased two electric vehicles. These vehicles are open-air vehicles with a seating arrangement different from a typical bus to allow quicker boarding and exiting. A plan by the University was initiated for the Fall 2004 semester to run both electric shuttles. One shuttle runs from 8AM until 5PM and the other shuttle runs from 8AM until 6PM, unless there is demand to extend the hours of operation. Any student, faculty, or staff may ride the electric shuttles. Funding for the electric shuttle is obtained through parking permit fees. Current ridership on the electric shuttle is approximately 250 people per day, when weather permits.

There are two electric shuttle lines. The Red Line begins in front of Sterry Hall, proceeds north through campus, and then travels west to the West Athletic Fields. The Blue Line begins in front of Falls Hall, proceeds north through the campus, and then travels west to the West Athletic Fields. These routes take approximately 22 to 25 minutes to complete. However, drivers will pick-up and drop-off people not on a route. Therefore, there is not a specific schedule for when the electric shuttles will arrive.

Texas State, CARTS, and the City of San Marcos have begun discussions regarding integrating the bus systems.

**SAN MARCOS’ BICYCLE AND PEDESTRIAN FACILITIES**

While the City of San Marcos has several existing bicycle and pedestrian facilities, a Transportation Master Plan has recently been completed for the City of San Marcos that documents proposed bike lanes and sidewalks. Existing facilities are summarized in the following columns.

**BICYCLE FACILITIES**

In the past, few facilities have been designated for bicycling in San Marcos. Currently, there is an existing bike lane provided along Holland Street, between LBJ Drive and Academy Drive. In addition, the shoulders of Hopkins Street, west of Wonder World Road and the shoulders of Wonder World Drive, north of IH 35 are designated for use by bicycles. Lastly, a wide sidewalk along Leah Road in front of an apartment complex one-quarter mile west of Wonder World Road has been designated as a shared bicycle and pedestrian use facility.

There are currently no designated bicycle routes through the Texas State campus. Based on basic off peak travel time runs through campus, it takes approximately six minutes to travel between the Student Recreation Center and Jowers Center (downhill), while it takes approximately 19 minutes to travel between Jowers Center and the Student Recreation Center (uphill). These travel time runs are on an undesignated bicycle route. Currently, the Texas State campus has many one-way streets, vehicles parked along the streets, pedestrians in streets, and uneven surfaces, which do not facilitate bicycling. While the existing travel times to traverse the campus are low, a designated bicycle route would further reduce the travel time and create a safer route for bicyclists.

Texas State has a campus run program in place for registration of bicycles and bicycle racks are provided in numerous locations. Signage is provided at handicapped ramps of campus to discourage students from riding their bicycles on the sidewalks.

**PEDESTRIAN FACILITIES**

Pedestrian facilities are intermittent within the City of San Marcos. Sidewalks, as well as pedestrian signal equipment, are provided around the central square in downtown San Marcos. In addition, wide sidewalks have been provided along both sides of Hopkins Street in front of the City Library, Activity Center, and City Hall, between Riverside and Charles Austin Drive. Other sidewalks linking schools and public facilities within the City are as follows:

- On one side or another for most of San Antonio Street, Hopkins Street, and Belvin Street.
- On the north side of Hopkins Street from RM 12 to the west to nearly the current city limit, with a one-quarter mile gap west of Bishop Street.
- On one side of Stagecoach Road for the one-mile length of a new subdivision.
- On one side of Cheatam Street from Guadalupe Street to Hopkins Street, with a few missing segments.
- On Thorpe Lane from Hopkins Street to Aquarena Springs Road.
- On the west side of River Road from just north of Hopkins Street to Barbara Drive.
- On Barbara Drive from River Road to Bugg Lane.
- On Uhland Road and Post Road, linking residential areas to the elementary school on Post Road.
- On Aquarena Springs Drive.
- On Charles Austin Drive to Sessom Drive, in front of campus buildings.
- On Holland Street from LBJ to Academy Drive.
- On Broadway Street leading to the high school.
- On Peter Garza Street leading to the high school.
- On Wonder World Road and Leah Avenue, near the Medical Center.

In several locations there are missing segments of sidewalks. The City of San Marcos’ Transportation Master Plan recommends construction of many of the missing segments of sidewalks, new sidewalks, and bicycle routes that will form a continuous bicycle and pedestrian network. One of the proposed pedestrian and bicycle facilities that will impact the Texas State campus is a proposed trail that will extend along the Aquarena Springs Drive corridor from IH 35 to Sessom Drive to within the University. This proposed trail would provide students with an alternative means to access the Texas State campus. In addition, a pedestrian and bicycle facility is also proposed on RM 12, northeast of the University. The City will include these two pedestrian and bicycle routes on the November 2005 bond referendum.

Pedestrian routes at Texas State are provided throughout the campus. However, there are some sidewalks with limited widths for accessible routes and many locations with stairs. It will be necessary to evaluate the grades to ensure that there are accessible routes provided throughout the campus.

**PARKING ON TEXAS STATE CAMPUS**

Texas State provides parking for all students, faculty and staff who operate or park a vehicle on campus. They are required to register their vehicle with Parking Services and purchase a parking permit. Commuter parking is located on the perimeter of the campus. The University’s shuttle bus system, Texas State Tram, provides transportation service from these lots to central campus. There are a total of 9,649 surface parking spaces and 2,712 parking garage spaces providing a total of 12,361 parking spaces for campus users. These 12,361 parking spaces provide 4,648 parking spaces for on-campus residents, 5,012 parking spaces for commuters/all permit holders, 2,069 parking spaces for restricted permit holders, and the remaining 632 parking spaces are divided among accessible spaces, carpool spaces, motorcycle spaces, service delivery spaces, service vehicle spaces, and hall director spaces. Walking time between buildings ranges from 17 seconds up to 29 minutes.

Off-campus residents are encouraged to use the park-and-ride Texas State Tram bus system. Several commuter parking lots surround the main campus. The Texas State Tram serves most of these lots.

A parking study was previously conducted for Texas State by Burke Consulting in October 2001. Recommendations from the study do not encourage additional parking spaces within the core of the University because this would create more areas where vehicles and pedestrians interact. The University is primarily a pedestrian environment and additional vehicles within the core area create vehicular/pedestrian conflict points. In addition, there is limited space within the core of the University for additional parking areas. The study recommended additional parking away from the University, along with an increased number and frequency of buses to serve the existing and forecasted number of students.

It should be noted that there are several lots throughout campus designated for visitor/guest parking. These include metered spaces, the LBJ Student Center Garage, and spaces near the Alumni House, Admission Office, and the River House.

Comparative cost data on some “peer institutions” is provided in Table 1 on the following page.

**SAN MARCOS’ RAIL LINES**

The City of San Marcos is divided in two by railroads. A north-south Union Pacific line extends through town and parallels IH 35. An east-west line, the old Katy line that is now owned by Union Pacific, begins near the center of town and extends east between SH 21 and SH 80.

There are 24 major public at-grade railroad crossings in San Marcos. Typical train speeds through San Marcos range from 10 to 45 miles per hour (mph) according to data provided by the Federal Railroad Administration. Slower train speeds of 10 to 20 mph generally occur in the center of town and increase to about 45 mph as the rail extends further.
away from the core area of the City. Daily traffic volumes at the railroad grade crossings range from 350 vehicles per day (vpd) at the County Road 173 railroad crossing to 72,210 vpd at the IH 35 frontage road railroad crossing. Daily train traffic ranges from 10 trains per day, on segments within the City, to 25 trains per day along the double tracked Union Pacific line in the southwest region of San Marcos. Based on information provided in the San Marcos’ Transportation Master Plan, the vehicular delay at each railroad crossing can range between 23 minutes per day (Cheatham Street railroad crossing) to 5,367 minutes per day (CM Allen Parkway railroad crossing). Current maximum train lengths are approximately one mile long. This maximum train length equates to a number of boxcars ranging from 88 to 105. The maximum number of boxcars ranges due to the variation in boxcar sizes. Union Pacific does not plan on expanding the train lengths to more than one mile in the future.

Currently, TxDOT is planning an overpass for Aquarena Springs Road at its rail crossing with the Union Pacific line. Based on existing development in the area, and the close proximity of Post Road and West Laurel Street, this will be an expensive undertaking. Post Road is located east of the Union Pacific railroad crossing. West Laurel Street is located west of the Union Pacific railroad crossing and travels north from Aquarena Springs Drive into the Texas State Golf Course area. Both intersections will be constructed as at-grade diamond intersections, while Aquarena Springs Drive will have a bridge structure over the diamond intersections. TxDOT has partial funding for this bridge allocated and is working on obtaining the remaining funds. TxDOT is currently updating the cost estimate and completing the required environmental study. TxDOT plans to start this project in September 2006 and complete construction in the spring of 2008.

UNION PACIFIC

Union Pacific Railroad is the largest railroad in North America, covering 23 states across the western two-thirds of the United States. Union Pacific owns and maintains all rail lines in San Marcos. Union Pacific Railroad is spending $6.8 million this year on track improvements to upgrade its line between New Braunfels and Round Rock. The improvements include maintenance crews removing and replacing nearly 18 miles of rail between New Braunfels and San Marcos.

AUSTIN-SAN ANTONIO COMMUTER RAIL LINE

The Commuter Rail District is in the process of studying commuter rail service options between Round Rock and San Antonio. This potential service could enhance transit operations in San Marcos. One commuter rail station is currently being considered for San Marcos in the downtown area. An engineering contract has been signed by Carter and Burgess to begin preliminary engineering for the commuter rail. There is no schedule for construction of this commuter rail line. The Rail District continues to hold discussions with Union Pacific Railroad about the use of its right-of-way and relocation of Union Pacific’s train traffic to another right-of-way, specifically SH 130. The Austin-San Antonio Commuter District has concerns with the large number of at-grade crossings on the existing Union Pacific rail line. The number of possible street closures and the costs associated with providing grade separations at major street crossings will be an issue for this proposed commuter rail.

In November 2004, a referendum was approved by Austin voters for the Capital Metropolitan Transportation Authority in Austin to begin building a passenger commuter rail line between Leander and downtown Austin. An existing rail line, portions of which are already owned by Capital Metro, would be utilized as part of the commuter rail line. Preliminary work will begin in 2005 and daily urban commuter rail service is expected to begin in 2008.

**TABLE 1: PARKING PERMIT COST DATA FOR PEER UNIVERSITIES**

<table>
<thead>
<tr>
<th>University</th>
<th>2003 – 2004 Enrollment*</th>
<th>Parking Permit Fees**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas State University-San Marcos</td>
<td>26,900</td>
<td>$45 residential, $35 commuter</td>
</tr>
<tr>
<td>Texas Tech</td>
<td>28,800</td>
<td>$250 garage, $139 residential, $118 commuter</td>
</tr>
<tr>
<td>Texas A&amp;M</td>
<td>44,800</td>
<td>$210 surface residential and commuter, $356 unreserved garage, $415 reserved garage</td>
</tr>
<tr>
<td>University of North Texas</td>
<td>31,100</td>
<td>$140 residential, $100 commuter (per year)</td>
</tr>
<tr>
<td>UT at El Paso</td>
<td>13,700</td>
<td>$25 perimeter, $10 remote</td>
</tr>
<tr>
<td>UT at San Antonio</td>
<td>26,200</td>
<td>$240 garage, $140 remote A, $66 remote B</td>
</tr>
<tr>
<td>UT at Arlington</td>
<td>25,000</td>
<td>$72 for all students</td>
</tr>
<tr>
<td>UT at Austin</td>
<td>48,600</td>
<td>$80-$140 surface, $240 garage commuter, $336 garage resident</td>
</tr>
<tr>
<td>University of Arizona</td>
<td>34,200</td>
<td>$115-$155 commutes, $450 garage (per year)</td>
</tr>
<tr>
<td>Northern Arizona University</td>
<td>19,000</td>
<td>$102 (per year)</td>
</tr>
<tr>
<td>University of Tennessee</td>
<td>24,800</td>
<td>$241 residential, $155 commuter (per year)</td>
</tr>
<tr>
<td>Northern Illinois</td>
<td>25,000</td>
<td>$300 reserved, $60 non-reserved</td>
</tr>
<tr>
<td>Kent State</td>
<td>24,000</td>
<td>$65-$120 residential, $45-$65 commuter</td>
</tr>
<tr>
<td>North Carolina at Chapel Hill</td>
<td>26,300</td>
<td>$254-$414 for remote, $0 for park and ride</td>
</tr>
<tr>
<td>Stephen F. Austin</td>
<td>11,300</td>
<td>$48 residential, $32 commuter (per year)</td>
</tr>
</tbody>
</table>

* Enrollment was rounded to the nearest hundred students

** Parking permit fees are given in dollars per semester, unless noted otherwise

Note: Information was provided by WHM Transportation Engineering.