~ Final plan ~
CONCEPT

OPEN SPACE CONNECTIONS

CONCEPT DIAGRAM

INITIAL OBJECTIVES
1. Clarify transportation and parking
2. Strengthen town-gown connections
3. Make campus visible and accessible to public
4. Recognize undergraduate and graduate programs
5. Establish and link open space network
6. Provide formal, natural, and recreational space
7. Establish east to west pedestrian and bike paths

OPTION ONE
The block currently occupied by Sterry Hall is transformed into a large green space. The Alumni House remains in its current location as a figural object within the park. A strong pedestrian connection on North LBJ links the campus to the downtown square. The proposed Fine Arts and Communication Center is located on the block occupied by Falls Hall. It will mark the Moon Street entrance to campus and encourage partnership with the City. This location is reflected in the final scheme.

OPTION TWO
Concho Street is split into a one-way pair of streets framing a large linear green space that reinforces the axial connection between the Undergraduate Admissions Center and the Theatre Center. The proposed Fine Arts and Communication Center and associated parking garage are located on the southern side of the green to encourage shared use with the City of San Marcos. Although elements from all three options can be found in the final scheme, the linear mall in this option was the most influential.

OPTION THREE
The most aggressive of all options, Woods Street is closed from Comanche to Moon allowing for a meandering linear lawn. Existing buildings remain within the lawn until such time that they are demolished and replaced. The proposed Fine Arts and Communication Center is located on the southern side of Concho Street. The plan creates an axial relationship between a new complex of buildings west of Comanche and a new signature building south of JC Kellam.
The three options shown on the previous page were presented and discussed. The positive attributes and constraints of each were carefully weighed and the final Master Plan is a synthesis of this interactive process. The Plan incorporates the most favorable elements from each option and eliminates aspects that were deemed unrealistic. The long term vision plan shown above reflects the potential for development and land use strategies for the Texas State campus. The ten year Master Plan is based on the Financial Planning and Space Needs Analysis and represents the first set of changes necessary in achieving the long term vision.
TEN YEAR BUILDING PLAN

BUILDINGS
1. Student Recreation Center Addition
2. Family and Consumer Sciences Addition
3. Greenhouse
4. 2nd Academic Building
5. Derrick Addition
6. Undergraduate Academic Center
7. Fine Arts and Communication Center
8. IT Hub
9. Alumni Center
10. Residential
11. Residential
12. Cogeneration Plant Addition

GROUNDS
13. Recreation Fields
14. East/West Mall Connection
15. Bus Hub (2)
16. Commons Courtyard
17. Concho Street Redevelopment
18. Bobcat Trail Redevelopment
19. Moon and Woods Realignment
20. State and Peques Realignment
21. Baseball/Softball Complex
22. Pedestrian Connection to Town

PARKING GARAGES
23. Speck Street ~ 450 spaces
24. Matthews Street ~ 1000 spaces
25. Fine Arts and Communication ~ 450 spaces
26. Pleasant St. Expansion ~ 300 additional spaces
27. State Street ~ 600 spaces
TEN YEAR RENOVATION PLAN

BUILDING RENOVATIONS AND IMPROVEMENTS
1. Harris Chiller
2. Roy F. Mitte Technology/Physics
3. Health Science Center
4. Cogeneration Chiller
5. Alkek Library
6. Derrick Hall
7. Psychology
8. Pecos
9. Trinity
10. Aqua Sports Center
11. Theatre Center
12. Jowers Center
The Texas State campus predominantly consists of impervious surfaces. Water is unable to penetrate an impervious surface causing stormwater run-off to travel downhill, creating a host of problems for the City of San Marcos. The underlying goal of this Master Plan is to reverse the trend of creating impervious surfaces and actively work towards the reduction of existing impervious surfaces on the campus.

Impervious surfaces are attributed to building footprints, streets, sidewalks, and surface parking lots. At present, impervious surfaces monopolize nearly 40% of the Texas State campus with 17% allocated to surface parking. The diagram above shows the aggregation of all the existing surface parking lots within the campus, totalling eighty-five acres - equivalent in area to the historic core of campus.

Throughout the master planning process, every land parcel was evaluated to determine if it was achieving its highest and best use. The analysis highlighted the fact that many areas currently designated as surface parking lots could be better utilized as building sites or as open space. The University mandated that the number of parking spaces would not be reduced or increased, and all spaces removed were to be replaced one-to-one. The Master Plan achieves this recommendation by replacing surface parking spaces in proposed structured parking garages.

An existing garage located at the center of campus will be expanded, encouraging staff and students to ‘park once’ at the beginning of the day and walk between classes rather than drive. Proposed new garages located at the east and west edges of campus shall be supported by a strong transit system that would efficiently move students to and around the campus.

The Master Plan allocates the reclaimed land into a series of green spaces, building footprints, and tree-lined pedestrian corridors that will help connect the campus from east to west. The pro-active introduction of pervious surfaces into the center of campus will foster the increase of natural vegetation, improve the quality of life, and heighten the experience of being in the hill country. Additionally, the increase in tree cover will increase shade and help lower temperatures, creating a healthier pedestrian environment.

The Plan balances large and small gestures. A large axial mall along Concho Street will provide a venue for casual student recreation as well as formal gatherings. Small interventions, such as the proposed green space at Commons Hall, add green space by removing surface parking and create an intimate place for informal conversation or study.

Additionally, the hill east of Old Main will be restored to a natural state by the removal of unnecessary streets and surface parking. This will aid in the reduction of stormwater run-off. Athletic and recreation fields will be added without purchasing land. And the perception of the campus will change: parking will evolve from a primary role to a support role, giving way to a greener, softer, more inviting campus core.

Above: The colored squares in the right hand column compare land areas from the existing campus to those in the long term vision. The lighter color reflect the current situation while the brightly colored squares represent the projected outcomes. The diagram shows that the area allocated to building footprints and structured open space has increased while the area consumed by surface parking has decreased.
Building projects are shown with estimated square footages based on the available building footprint multiplied by the number of floors in a building. These square footages may or may not be adjusted at the time of actual space programming. Total project costs were calculated taking the estimated square footage multiplied by an estimated cost per unit/cost to develop a construction cost. In some cases, estimates include extensive site development. The estimated budget costs also include any furnishings, fixtures and equipment allowance, soft costs, project contingencies, and 5% to 7% annual inflation. Total project costs may or may not be adjusted when actual programming of the space occurs and are dependent upon fund availability.

Note: The included estimated annual inflation costs do not reflect the potential impact on construction labor and materials as a result of the 2005 Hurricanes Katrina and Rita.

<table>
<thead>
<tr>
<th>BUILDING NAME</th>
<th>AREA</th>
<th>UNIT</th>
<th>ESTIMATED TOTAL PROJECT COST</th>
<th>FUNDING SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Academic Center (internal Chiller Plant)</td>
<td>4-Story New Academic - 45,436 sf</td>
<td>170,000 GSF</td>
<td>$47,700,000</td>
<td>Tuition Revenue Bonds</td>
</tr>
<tr>
<td>Internal Chiller Plant for Undergraduate Center</td>
<td>New South Chiller Plant and Infrastructure</td>
<td>20,000 GSF</td>
<td>$3,680,316</td>
<td>TSUS Bond Sale - Utility Revenue</td>
</tr>
<tr>
<td>Bus Hub - Guadalupe Turnaround</td>
<td>Bus Loop</td>
<td>20,000 GSF</td>
<td>$840,000</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Fine Arts and Communication Center</td>
<td>4-Story New Academic - 64,619 sf</td>
<td>200,000 GSF</td>
<td>$70,850,000</td>
<td>Tuition Revenue Bonds or Higher Education Assistance Funds & Private Funds</td>
</tr>
<tr>
<td>Concho Street Redevelopment</td>
<td>Landscape</td>
<td>95,043 GSF</td>
<td>$1,689,000</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Admissions Center Grounds</td>
<td>Landscape</td>
<td>35,008 GSF</td>
<td>$579,196</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Pedestrian Connection to Town</td>
<td>Landscape</td>
<td>70,000 GSF</td>
<td>$756,000</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Gateways - new and improvements to existing</td>
<td>Gateway and Landscape</td>
<td>84,888 GSF</td>
<td>$5,000,000</td>
<td>TSUS Bond Sale - Parking Revenues & Unexpended Plant Funds</td>
</tr>
<tr>
<td>Pleasant Street Garage Addition (283 cars) & Bus Loop</td>
<td>3-Story Addition to Garage - 28,296 sf & bus loop</td>
<td>84,888 GSF</td>
<td>$5,000,000</td>
<td>TSUS Bond Sale - Parking Revenues & Unexpended Plant Funds</td>
</tr>
<tr>
<td>Roy F. Mitte Technology/Physics Improvements</td>
<td>Finish out of 5th floor (2.6 million for equipment)</td>
<td>$5,600,000</td>
<td>Higher Education Assistance Funds</td>
<td></td>
</tr>
<tr>
<td>Pecos Renovation</td>
<td>Renovation</td>
<td>10,800 GSF</td>
<td>$620,000</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>Harris Chiller Renovation</td>
<td>Renovation</td>
<td>10,911 GSF</td>
<td>$6,024,256</td>
<td>TSUS Bond Sale - Utility Revenue</td>
</tr>
<tr>
<td>CoGen Addition (office & chemical storage), New Road</td>
<td>3-Story New Administration - 3,637 sf</td>
<td>10,911 GSF</td>
<td>$4,080,409</td>
<td>TSUS Bond Sale - Utility Revenue</td>
</tr>
<tr>
<td>CoGen Chilled Water Expansion & Chiller Replacement</td>
<td>1 new 2,000 ton chiller</td>
<td>3,904,553</td>
<td>TSUS Bond Sale - Utility Revenue</td>
<td></td>
</tr>
<tr>
<td>Tomas Rivera Realignment</td>
<td>Street Realignment</td>
<td>66,000 GSF</td>
<td>$1,880,000</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Comanche Street Colonnade</td>
<td>Colonnade</td>
<td>60,000 GSF</td>
<td>$972,000</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Student Recreation Center Addition and Renovation</td>
<td>2-Story New Addition - 45,284 sf, Renovation - 30,000 sf</td>
<td>89,000 GSF</td>
<td>$22,055,000</td>
<td>TSUS Bond Sale - Student Recreation Fees</td>
</tr>
<tr>
<td>Jowers Renovation</td>
<td>Renovation</td>
<td>8,018 GSF</td>
<td>$1,500,000</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>Greenhouse - R 20</td>
<td>1-Story New Research/Lab - 8,018 sf</td>
<td>8,018 GSF</td>
<td>$2,832,359</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>Health Science Center Renovation</td>
<td>Renovation</td>
<td>29,920 GSF</td>
<td>$2,000,000</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>Family and Consumer Science Addition</td>
<td>2-Story New Academic - 14,960 sf</td>
<td>29,920 GSF</td>
<td>$7,996,120</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>Matthews Street Garage (593 cars)</td>
<td>4-Story New Garage - 74,449 sf</td>
<td>297,796 GSF</td>
<td>$16,573,392</td>
<td>TSUS Bond Sale - Parking Revenues</td>
</tr>
<tr>
<td>Theatre Renovation</td>
<td>Renovation</td>
<td>840,000 GSF</td>
<td>$2,000,000</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>BUILDING NAME</td>
<td>AREA</td>
<td>UNIT</td>
<td>ESTIMATED TOTAL PROJECT COST</td>
<td>FUNDING SOURCE</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>North Housing C - Lot 201 (262 beds) & Street Realignment</td>
<td>5-Story New Residential - 20,961 sf</td>
<td>104,805 GSF</td>
<td>$24,209,955</td>
<td>TSUS Bond Sale - Housing Revenue</td>
</tr>
<tr>
<td>North Housing B - Lot 201 (165 beds) & Street Realignment</td>
<td>5-Story New Residential - 13,217 sf</td>
<td>66,085 GSF</td>
<td>$15,265,635</td>
<td>TSUS Bond Sale - Housing Revenue</td>
</tr>
<tr>
<td>North Housing A - Lot 201 (262 beds) & Street Realignment</td>
<td>5-Story New Residential - 20,961 sf</td>
<td>104,805 GSF</td>
<td>$24,209,955</td>
<td>TSUS Bond Sale - Housing Revenue</td>
</tr>
<tr>
<td>Speck Street Garage (721 cars)</td>
<td>4-Story New Garage - 54,091 sf</td>
<td>216,364 GSF</td>
<td>$9,858,085</td>
<td>TSUS Bond Sale - Parking Revenues</td>
</tr>
<tr>
<td>Academy Street Bus Stop</td>
<td>New Bus Stop - 381 sf</td>
<td>381 GSF</td>
<td>$270,510</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Bobcat Trail Redevelopment</td>
<td>Landscape</td>
<td>70,000 GSF</td>
<td>$4,150,589</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Commons Courtyard</td>
<td>Landscape</td>
<td>25,000 GSF</td>
<td>$438,750</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>TT Hub/Telecom Liner Building and Relocation of Switch</td>
<td>3-Story New Administration - 3,573 sf</td>
<td>10,719 GSF</td>
<td>$3,774,005</td>
<td>TSUS Bond Sale - Unexpended Plant Funds and Telephone Reserves</td>
</tr>
<tr>
<td>Derrick Addition & Facade on Classroom Portion</td>
<td>4-Story New Academic - 10,002 sf</td>
<td>40,008 GSF</td>
<td>$10,962,192</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>Aqua Sports Renovation</td>
<td>Renovation</td>
<td></td>
<td>$1,530,000</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>State Street Garage (595 cars), JCK Bridge (two-way), Hill House Demolition</td>
<td>4-Story New Garage - 44,668 sf</td>
<td>178,432 GSF</td>
<td>$11,135,923</td>
<td>TSUS Bond Sale - Parking Revenues & Unexpended Plant Funds</td>
</tr>
<tr>
<td>State and Peques Realignment</td>
<td>Street Realignment</td>
<td>56,465 GSF</td>
<td>$1,484,939</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>Fine Arts and Communication Garage (542 cars)</td>
<td>5-Story New Garage - 32,500 sf</td>
<td>162,500 GSF</td>
<td>$9,871,875</td>
<td>TSUS Bond Sale - Parking Revenues</td>
</tr>
<tr>
<td>Hornsby/Burleson Replacement (64 beds)</td>
<td>3-Story New Residential - 8,468 sf</td>
<td>25,404 GSF</td>
<td>$5,868,324</td>
<td>TSUS Bond Sale - Housing Revenue</td>
</tr>
<tr>
<td>Hornsby/Burleson Replacement (64 beds)</td>
<td>3-Story New Residential - 8,493 sf</td>
<td>25,479 GSF</td>
<td>$5,885,649</td>
<td>TSUS Bond Sale - Housing Revenue</td>
</tr>
<tr>
<td>Hornsby/Burleson Replacement (82 beds)</td>
<td>3-Story New Residential - 10,820 sf</td>
<td>32,460 GSF</td>
<td>$7,498,260</td>
<td>TSUS Bond Sale - Housing Revenue</td>
</tr>
<tr>
<td>East/West Mall Connection</td>
<td>Landscape and Realignment of James St.</td>
<td>233,000 GSF</td>
<td>$2,201,850</td>
<td>TSUS Bond Sale - Unexpended Plant Funds</td>
</tr>
<tr>
<td>West Campus Recreation Fields</td>
<td>3 New Fields</td>
<td>5 EA</td>
<td>$1,500,000</td>
<td>TSUS Bond Sale - Student Recreation Fees</td>
</tr>
<tr>
<td>Baseball/Softball Complex</td>
<td>Improvements at Complex</td>
<td>25,000 GSF</td>
<td>$4,000,000</td>
<td>Private Funds</td>
</tr>
<tr>
<td>Alumni Center</td>
<td>2-Story New Administration - 14,703 sf</td>
<td>91,070 GSF</td>
<td>$24,461,402</td>
<td>Tuition Revenue Bonds</td>
</tr>
<tr>
<td>2nd Academic Building - Elliott Replacement</td>
<td>5-Story New Academic - 18,214 sf</td>
<td>93,980 GSF</td>
<td>$8,560,000</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>Psychology Renovation</td>
<td>Renovation</td>
<td>39,142 GSF</td>
<td>$8,560,000</td>
<td>Higher Education Assistance Funds</td>
</tr>
<tr>
<td>Total Academic SF</td>
<td></td>
<td>539,016 SF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Residential SF</td>
<td></td>
<td>359,038 SF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Garage SF</td>
<td></td>
<td>939,980 SF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* budget costs include 5% to 7% annual inflation
~ BUILT SYSTEMS ~
TRANSPORTATION MODES

Pedestrian

The Master Plan strives to make walking the primary mode of transportation on the Texas State campus. The benefits are numerous including the facilitation of informal interaction between students and faculty while supporting a healthy life style. The Master Plan advances the pedestrian experience, efficiently moving students through the campus. It prescribes a strong pedestrian spine from east to west. The path will begin at Blanco Hall, travel over Comanche, through the Quad, and continue to Sewell Park. In addition to this pedestrian spine, the Master Plan also designates a pedestrian zone anchored by the historic core that has been primarily reserved for foot traffic. The removal of cars from Bobcat Trail is also proposed.

Students will be able to move comfortably through the pedestrian network shaded by a series of sunshades and a newly planted arboretum.

Guadalupe and North LBJ are highlighted as the major links to downtown San Marcos. Improving the pedestrian experience on these streets can only encourage students, faculty, and staff to frequent the Courthouse Square and support the local businesses downtown.

Bicycle

The Master Plan promotes a strong bicycle network throughout the Texas State campus. Providing a connection to the bicycle network proposed by the City of San Marcos will permit the academic community to safely commute to and from campus.

The challenging topography is negotiated with an east to west loop that runs parallel to the ridge line and extends the full two and a half mile length of campus. Ramps have been placed near Jones Dining Hall and Elliott Hall to ease the transition from North to South. Bicycle stations have been strategically located at the Recreation Center, Pleasant Street Garage, and Commuter Rail Garages. These will contain lockers, shower facilities, and provide safe, and secure bicycle storage. To encourage students to bring their bicycles to school and to ensure continued security, bicycle racks should be provided at proposed bike stations and at all residence halls. A small repair shop should be provided near the center of campus to encourage maintenance of bicycles and prevent riders from becoming discouraged by minor mechanical problems.

For bicycles to become a preferred form of travel on the campus the University must actively support this healthy and energy efficient transit mode.

Bus and Electric Shuttle

The Texas State Tram bus system should be reliable, robust, and efficient. As student parking is shifted to the periphery of campus, the role of the bus system will be elevated. The system must proficiently move an increased volume of students to and from central campus, as well as around campus. The Master Plan logically locates bus stops at each garage to encourage park-and-ride.

Bus stops throughout the campus should be designed to provide shade and shelter from inclement weather. The major hubs that have been located at the Pleasant Street Garage, the LBJ Student Center, and the proposed Undergraduate Academic Center should provide information and activity to help reduce the perceived wait times. Lay-bys will be placed at critical points throughout campus to improve safety and promote smooth traffic flow. To increase reliability, routes should minimize crossing of the railroad tracks.

The Texas State Tram and Electric Shuttle routes and schedules should be designed to work as part of a larger network. The University will continue discussions with the city’s CARTS program to form a unified comprehensive regional system.

Commuter Rail

A stop on the Austin/San Antonio commuter rail line is a victory for the City of San Marcos. As the single largest employer within City of San Marcos, Texas State’s Master Plan offers a secondary location for a stop within the University property, at the corner of Charles Austin Drive and the Union Pacific Railroad. The stop functions as a multimodal station. It will house a bike station for those who wish store bikes for daily commuting within the campus, a bus hub to efficiently move rail riders onto and out of the center of campus, and a garage for those who wish to park and ride the train to other destinations.

The other station location option under consideration is near the campus and could be integrated with the Texas State bus system.

Automobile

Drivers are encouraged to ‘park once’ and embrace alternate modes of transportation while on the campus grounds. Long term parking should be on the outer edges of campus and linked to the core with a robust transit system. To reduce on campus traffic, daily commuters are expected to park once. The majority of parking spaces are within a five minute walking distance from the core of campus. Hourly parking is available at metered parallel spots throughout the campus. (A diagram of recommended parallel parking spaces is located in the appendix.)

To allow efficient movement within the campus the Master Plan recommends all streets permit two-way traffic. Drop-off and pick-up locations should be designated as close as possible to the core; if necessary, lanes should be provided for stacking and turning to prevent interruption of traffic flow. The Master Plan designates a drop-off and pick-up between Beretta Hall and Nueces, on North LBJ.
Identification of an academic institution is achieved through simple, direct, well designed signs that are unique to the character of the institution and place. Quality and consistency of the overall signage system is a direct reflection of the campus. The signage should simply identify Texas State University–San Marcos and be readable from a distance of 150 feet. The materials and design should age gracefully and be timeless. The letters should have a fair degree of contrast from the background. The marker should be illuminated so as to be readable at night and in inclement weather.

Two locations are identified for large scale gateway signage, one at the termination of Aquarena Springs Drive at the eastern edge of campus, where the majority of first-time visitors arrive. The second location is at the western edge of the campus at RR12 and Holland.

The second scale of identity markers are recommended along Sessom at the northern edge of the campus. Three locations are identified, each having a traffic light and green medians to calm traffic. The markers are located in the median identifying entry into the campus. Smaller in size than the high-speed markers, they should be illuminated at night, and should be readable from 50 feet.

The majority of first time visitors to the campus arrive from the east along Aquarena Springs Drive. At the termination of Aquarena the street splits into Sessom, which runs along the northern edge, and University Drive, which continues and runs along the southern edge of the campus.

At the first opportunity to turn onto campus, from the north onto State Street or the south from Moon Street, gate houses with an attendant to provide information and parking instruction to visitors are recommended.

Entry from the southern edge of the campus will occur predominantly by foot. Identity markers along the edges shall be visible at slow vehicular speeds and by pedestrians. Several solutions are proposed:

1) Black metal trash receptacles with the institution's name identified on each receptacle. Two trash receptacles should be located at every intersection as well as one at the mid-block of every street.

2) Black metal street lights 50' on center that match the campus standard.

3) 2' x 2' concrete pavers with the Texas State logo should be embedded at 25' intervals along the sidewalk. Additionally, the paver should be incorporated into the accessibility ramps located at every intersection.
The Master Plan suggests three scales of signage that will help identify the gateways and boundary edges of the Texas State campus. Additionally, two gate houses are located at the north and south edges of the campus to help first time visitors with directions and information.
STREET NETWORK, PEDESTRIAN NETWORK, AND PARKING SYSTEM

Parking System

Surface parking currently occupies 85 acres of the Texas State campus. Over time the consolidation of this parking into strategically located garages frees up land for green space and building sites, drastically reducing the amount of impervious surface and therefore water run off. Large parking garages at the eastern and western edges of campus are supported by a strong transit system that moves people to and from the center of campus. The Master Plan does not alter the number of parking spaces, rather it relocates them in accordance with the larger campus vision.

Street Network

The existing street network is complicated by a series of one-way segments and awkward intersections. The Master Plan removes vehicles from the historical core. It reopens all streets to two-way traffic with four exceptions: the bus loop in front of the LBJ Student Center, the bus loop at the proposed Undergraduate Academic Center, the Buckner service loop, and the one-way pair on either side of the Concho Green. State and Poques are aligned to intersect Sessom at ninety degrees. Woods Street is extended to meet Moon Street. Tomas Rivera is relocated to the eastern side of the Student Health Center. Hill House Drive is converted into a walking path. Student Center Drive is realigned.

Pedestrian Network

Walking is the primary mode of transportation for the average student on a university campus. The Master Plan strives to knit together the Texas State campus with a system of pathways that are clearly defined and accessible. Major intersections at Comanche, Sessom, Academy, and University Drive have been identified as primary pedestrian crossings. A clear and safe path should connect the campus to Courthouse Square.
Prior to the implementation of proposed Master Plan facilities, the following should be conducted:

1. The existing storm sewer, water, sanitary sewer, and gas systems should be evaluated in detail including detailed mapping of the systems and the development of system hydraulic models. The mapping of the systems, which may include conducting topographic surveys, will identify system characteristics including pipe diameters and alignments; the location of visible features such as manholes, inlets, valves, and elevations including invert, top of manholes, etc. Hydraulic model results will identify current system deficiencies and future system requirements to serve proposed Master Plan facilities.

2. Determination of system modifications would also include development of probable construction costs and identification of permitting and approval requirements.

3. Proposed modifications of storm sewer, water, and sanitary sewer systems should be coordinated with the City of San Marcos to verify system requirements. Coordination should also include an investigation of possible cost-sharing opportunities.

Briefly describe the current operational system

The existing storm sewer, water, sanitary sewer, and gas systems shall be evaluated including detailed mapping of the systems and development of system hydraulic models. The mapping of the systems, which may include conducting topographic surveys, will identify system characteristics including pipe diameters and alignments; the location of visible features such as manholes, inlets, valves, and elevations including invert, top of manholes, etc. Hydraulic model results will identify current system deficiencies and future system requirements to serve proposed Master Plan facilities.

Prior to the implementation of proposed Master Plan facilities, the following should be conducted:

1. The existing storm sewer, water, sanitary sewer, and gas systems should be evaluated in detail including detailed mapping of the systems and the development of system hydraulic models. The mapping of the systems, which may include conducting topographic surveys, will identify system characteristics including pipe diameters and alignments; the location of visible features such as manholes, inlets, valves, and elevations including invert, top of manholes, etc. Hydraulic model results will identify current system deficiencies and future system requirements to serve proposed Master Plan facilities.

2. Determination of system modifications would also include development of probable construction costs and identification of permitting and approval requirements.

3. Proposed modifications of storm sewer, water, and sanitary sewer systems should be coordinated with the City of San Marcos to verify system requirements. Coordination should also include an investigation of possible cost-sharing opportunities.

General Recommendations

Stormwater Drainage System

Existing Conditions

1. Stormwater runoff within the campus is collected by a combination of closed storm sewer systems, curb and gutter, sheet flow, and/or open ditch systems.

2. The existing storm sewer system pipe sizes range from 4 to 60 inches in diameter.

3. The regulatory 100-year floodplains on the campus are located along Sink Creek and the San Marcos River.

4. The following four areas on the campus have been identified as having experienced drainage and/or flooding problems:

 - Drainage Problem Area 1 - The area located near the intersection of Lindsey and Moose Streets
 - Drainage Problem Area 2 - At the house located north of the intersection of Lindsey and North Streets
 - Drainage Problem Area 3 - The area west of the intersection of Sessom Drive and North LBJ Drive
 - Drainage Problem Area 4 - The area north of the intersection of Sessom Drive and Pleasant Street

Proposed 10 Year Improvements

1. Storm drainage requirements for the proposed Texas State University-San Marcos Master Plan facilities were evaluated considering drainage criteria as outlined by the City of San Marcos.

2. For areas where proposed Master Plan facility modifications consist of replacing an existing paved parking area with a new structure, the quantity of stormwater runoff from this area could be considered to be the same as for current conditions, therefore may not require new drainage systems.

3. If the proposed facility includes replacing an unpaved area with a new structure, then stormwater runoff from the proposed facility would need to be collected in a drainage system considering the drainage criteria as required by the City of San Marcos.

4. There are no Master Plan facilities proposed to be located within the FEMA regulated 100-year floodplain.

5. There are two Master Plan facility areas that have been identified where new storm drainage systems will be required and are described as follows:

 - New Drainage System 1 – This drainage system would be located along Matthews Street and north of Russell Circle and collect stormwater runoff from proposed facilities located north and south of Matthews Street.
 - New Drainage System 2 – This drainage system would collect stormwater runoff from the proposed Master Plan facilities located in the area bounded by LBJ Drive on the west, Woods Street on the north, Moon Street on the east, and Concho Street on the south.

6. A summary of the City of San Marcos Drainage Criteria is as follows:

 - New land development activity requires an adequate drainage system that provides the capacity to safely convey runoff from large storm events and to limit the impact of increased runoff to downstream properties and drainage systems.

 - Provisions should be made that specify stormwater runoff requirements from new construction and redeveloped areas.

 - Develop stormwater runoff quality management requirements for land within the San Marcos River Corridor and for the Edwards Aquifer Recharge Zone.

 - Erosion control measures for land development activities are both temporary and permanent in nature.

 - A Watershed Protection Plan Application should be completed and submitted for any proposed developments or improvements.

Note: Information was provided by Halff Associates, Inc.

Potable Water System

Existing Conditions

1. Texas State’s source of potable water is from the Edwards Aquifer, which is pumped from two water wells.

2. Water is distributed to the campus by University maintained water distribution system mains that range in size from 4 to 12 inches in diameter.

3. There are two storage tanks located on campus. One of the storage tanks is elevated and has a storage capacity of 1.5 million gallons. The other storage tank is an at-grade ground (standpipe) tank having a storage capacity of 500,000 gallons.

4. There are no known problem areas within the University’s water distribution system.

5. The average monthly water usage by the University is estimated to be approximately 35 million gallons during the winter months and 22 million gallons during the summer months.

6. The City of San Marcos has the capability to provide water to the University through connection points at the elevated water storage tank located at Speck Street.

7. Texas State uses raw water obtained from the San Marcos River and Spring Lake to fill on-site ponds, for irrigation, and for cooling towers at the East Chill Plant and the Cogeneration Plant.

Proposed 10 Year Improvements

1. There are existing water distribution lines located near most of the proposed facilities that could be used to provide water for the proposed facilities.

2. Any proposed water system modification or new water systems should be designed and sized to comply with the City of San Marcos and TCEQ rules, regulations, ordinances, and codes; and results from the hydraulic modeling.

3. If it is determined that the University does not have sufficient capacity to meet future water supply demands, then it is possible that the City could supply water for the University.

Note: Information was provided by Halff Associates, Inc.
Sanitary Sewer System

Existing Conditions

1. Texas State is located within the City of San Marcos’ Sewer Certificate of Convenience and Necessity (CCN) service area.

2. Wastewater flow from University facilities is collected within a University maintained sanitary sewer system which connects to the City of San Marcos sanitary sewer system. The University has an industrial permit to discharge its wastewater flow to the City’s system.

4. The sanitary sewer system pipe sizes range from 4 to 12 inches in diameter.

5. There are three locations where sanitary sewer problems (overflow at manholes and back-up of flow) have been reported and identified; summarized by the following:

 - Sewer Problem Area 1 - A 10-inch University maintained sanitary sewer pipe located on the west side of the campus along Lindsey and Moore Streets which flows into a City maintained 6-inch sanitary sewer pipe.

 - Sewer Problem Area 2 - An existing 8-inch sanitary sewer pipe located along Comanche Street that flows into an existing 12-inch sanitary sewer pipe located on Martin Luther King Street. This 8-inch line has been identified to collect future wastewater flows from the University. However, it is not known if this system has the capacity to collect additional flows.

 - Sewer Problem Area 3 - Wastewater flow from the central portion of the campus and west of the San Marcos River is collected in a 15-inch sanitary sewer pipe located on Aquarena Springs Drive. This 15-inch sanitary sewer flows into a 24-inch sewer pipe located further south on University Drive. It is assumed that the cause of overflow problems at this location is due to the flat grade of this 15-inch pipe. Recently, a section of the sewer pipe located at the intersection of Aquarena Springs and Sessom Drive was replaced with an 18-inch sewer pipe.

PROPOSED 10 YEAR IMPROVEMENTS

1. There are existing sanitary sewer systems in the vicinity of the majority of the proposed facilities; however, capacity limitations of these systems are not known without the development of a hydraulic model.

2. There are several locations within the campus in which proposed sanitary sewer system modifications have been identified by the City of San Marcos. A summary of these proposed City sewer projects are as follows:

 - City Sanitary Sewer Project 1 - The existing 6-inch line located near Lindsey and Moore Streets is proposed to be upgraded sometime in 2006 or 2007 to correct sewer problems in the area and accommodate additional flow from the University.

 - City Sanitary Sewer Project 2 - The City proposes to construct a new 15-inch sanitary sewer system located on the southeast portion of the campus on University Drive from Sessom Drive to CM Allen Parkway. This line would relieve flows that are currently being collected in the 15-inch pipe located on Aquarena Springs.

 - City Sanitary Sewer Project 3 - A 36-inch sanitary sewer system is proposed to be constructed on the east and south of the athletic complex. This 36-inch system is scheduled to be constructed within the next six to eight months (October to December 2005) and would collect wastewater flow from the proposed Master Plan facilities located near the existing baseball field complex.

 - Sewer Problem Area 2 - An existing 8-inch sanitary sewer pipe located along Comanche Street that flows into an existing 12-inch sanitary sewer pipe located on Martin Luther King Street. This 8-inch line has been identified to collect future wastewater flows from the University. However, it is not known if this system has the capacity to collect additional flows.

 - Sewer Problem Area 3 - Wastewater flow from the central portion of the campus and west of the San Marcos River is collected in a 15-inch sanitary sewer pipe located on Aquarena Springs Drive. This 15-inch sanitary sewer flows into a 24-inch sewer pipe located further south on University Drive. It is assumed that the cause of overflow problems at this location is due to the flat grade of this 15-inch pipe. Recently, a section of the sewer pipe located at the intersection of Aquarena Springs and Sessom Drive was replaced with an 18-inch sewer pipe.

Note: Information was provided by Halff Associates, Inc.

NATURAL GAS SYSTEM

Existing Conditions

1. Centerpoint Energy provides natural gas to City of San Marcos customers including Texas State University-San Marcos.

2. An existing gas distribution system is located throughout the Texas State campus and supplies natural gas to most of the existing buildings.

3. Centerpoint Energy owns and maintains approximately 75 percent of the gas lines on campus and the University owns the other 25 percent.

4. The gas lines serving the University range in size from 2 to 8 inches in diameter.

5. Centerpoint Energy has sufficient capacity within the current distribution system to meet Texas State’s current and future natural gas demands.

PROPOSED 10 YEAR IMPROVEMENTS

1. All future buildings, with the exception of the baseball and softball stadium areas, will be located within close proximity to existing gas lines. The need for new gas infrastructure will be minimal.

2. Regulating stations at critical points of the gas system should be analyzed and evaluated as proposed Master Plan facilities are constructed.

Note: Information was provided by Halff Associates, Inc.
Chilled Water System

Existing Conditions

Texas State University-San Marcos currently has a combination of piping in a tunnel system and direct buried piping which distributes thermal utilities to buildings throughout the campus. There are three main plants that produce chilled water to meet campus demand. The Cogeneration Plant houses four 1,500 ton chillers for a total plant capacity of 6,000 tons. The East Chill Plant contains five 550 ton chillers for a capacity of 2,750 tons. There are four chillers in the Harris Plant which combine for 1,640 tons of rated capacity. However, the Harris Plant is having trouble generating its rated capacity, and operates at full load conditions during peak periods. According to Texas State, the maximum capacity for this facility is approximately 1,175 tons. Equipment in the Harris Plant is reaching the end of its expected life and the facility is in need of an upgrade. The Cogeneration Plant must operate all four chillers during peak load periods leaving no system wide redundancy. The East Chill Plant currently operates with 700 tons of excess capacity.

Chilled water demand for Texas State’s campus is nearing the maximum sustainable load for the University’s generation facilities. Additional load placed on the system by the proposed campus building plan will begin to exceed Texas State’s generation capacity in the near future. Additional load on the west side of campus resulting from the building plan will exceed Harris Plant’s generation capacity. The loss of a chiller in the Cogeneration or Harris Plants during peak load periods could prevent the University from producing enough chilled water to meet demand.

Proposed 10 Year Improvements

The chilled water distribution system needs generation capacity added before connecting new buildings to the distribution system. This can be accomplished by replacing the existing chillers in the Harris Plant resulting in an increased capacity of 2,200 tons, and by adding a new chiller plant with an initial capacity of 4,500 tons in the south central area of campus. With the upgrade of the Harris Plant and the initial build-out of a new South Chill Plant, Texas State will have 13,950 tons of firm cooling capacity. Until the south plant is constructed, capacity at the Cogeneration Plant will be increased with the addition of one new chiller and the replacement of one 1,500 ton chiller with a 2,000 ton unit will ensure adequate capacity on campus.

Note: Information provided by Shah Smith & Associates, Inc.

Steam System

Existing Conditions

Texas State’s steam demand is met by two gas-fired boilers and one steam generator utilizing waste heat from the cogeneration engine in the Cogeneration Plant. The boilers are rated for 50,000 pph of steam production but are limited to 33,000 pph to comply with TCEQ (Texas Commission on Environmental Quality) requirements. 12,000 pph of steam can be recovered from the waste heat steam generator on the cogeneration unit. There are also two boilers in the Harris Plant capable of producing 12,000 pph each, but are not currently used.

Proposed 10 Year Improvements

The firm steam production capacity for Texas State’s campus is 69,000 pph, while the peak system demand is about 57,000 pph. The firm capacity is considered with one of the Cogeneration Plant’s gas-fired boilers out of service. Therefore, if a boiler in the Cogeneration Plant was out of commission, the Harris Plant boilers might be required to meet demand. The proposed ten year build-out in this Master Plan, the system demand should peak around 67,850 pph.

Texas State has considered obtaining three more cogeneration engines for added reliability, the ability to shave peak electric demand, and to export electricity to the local utility. Shah Smith & Associates performed a screening analysis for additional cogeneration, and from an economic standpoint the payback period exceeds the expected life of the equipment. While additional cogeneration is not considered a prudent investment at present, the economics should be monitored to see if conditions change. A large increase in electricity costs or a significant decrease in gas prices may warrant additional generator sets in the future.

Note: Information was provided by Shah Smith & Associates, Inc.
The telecommunications services department currently uses fiber as its main means of connectivity between floors of buildings, between buildings, and to connect with local service providers who connect to the outside world. This media and network topology will handle the communication needs of most facilities, service, and protection departments on campus. With fiber becoming the common media, the infrastructure pathway needed to deliver and protect the fiber to new and renovated facilities is of major importance to the expansion of all required data transmission services to these projects. Along with distributing the fiber, it is important that, in case of a major communication equipment failure, transport media destruction, or major system outage there is a redundancy back up route for continued service to the campus. It is recommended that, as part of the ten-year building plan, additional redundant routing is established via fiber rings and redundant connectivity to outside service providers.

PROPOSED 10 YEAR IMPROVEMENTS

This communications ten year Master Plan has addressed three locations to place pathways and fiber to take the University in the direction of total redundancy and ring topology on and off the campus. It is recognized that this volume of change and expense cannot happen at once; therefore, this plan still maintains some traditional campus philosophies in the placement and quantity of infrastructure. The routing of this infrastructure will remain consistent even as the campus moves towards all communications devices being just another node on the network.

Proposed 10 Year Improvements

The telecommunications services department currently uses fiber as its main means of connectivity between floors of buildings, between buildings, and to connect with local service providers who connect to the outside world. This media and network topology will handle the communication needs of most facilities, service, and protection departments on campus. With fiber becoming the common media, the infrastructure pathway needed to deliver and protect the fiber to new and renovated facilities is of major importance to the expansion of all required data transmission services to these projects. Along with distributing the fiber, it is important that, in case of a major communication equipment failure, transport media destruction, or major system outage there is a redundant back up route for continued service to the campus. It is recommended that, as part of the ten-year building plan, additional redundant routing is established via fiber rings and redundant connectivity to outside service providers.

Existing Conditions

At present, Texas State University-San Marcos has communications, data networking, instructional technology, access control, and CATV all operating as independent departments. As the worlds of communications and technology merge these departments/systems must move towards a common network and protocol for information exchange, control, and monitoring. The University, like the rest of the modern business world, sees the benefits of convergence of the various technologies and infrastructure that support them so that new technologies can meet the needs of multiple departments and University functions.

The telecommunications services department currently provides voice communication to all campus buildings and facilities via a traditional TDM voice switch platform. This method requires that an expensive high pair count copper be placed into each new location. Recently, the University has been investigating the concept of providing Voice over Internet Protocol (VoIP) phone service to all academic and learning facilities, while continuing the existing method of voice service to residence halls only. This transition will not only provide state of the art communications services to the campus but will nearly eliminate the need for additional high pair count cables being needed to service future institutional buildings.

The telecommunications services department currently uses fiber as its main means of connectivity between floors of buildings, between buildings, and to connect with local service providers who connect to the outside world. This media and network topology will handle the communication needs of most facilities, service, and protection departments on campus. With fiber becoming the common media, the infrastructure pathway needed to deliver and protect the fiber to new and renovated facilities is of major importance to the expansion of all required data transmission services to these projects. Along with distributing the fiber, it is important that, in case of a major communication equipment failure, transport media destruction, or major system outage there is a redundant back up route for continued service to the campus. It is recommended that, as part of the ten-year building plan, additional redundant routing is established via fiber rings and redundant connectivity to outside service providers.

Proposed 10 Year Improvements

This communications ten year Master Plan has addressed three locations to place pathways and fiber to take the University in the direction of total redundancy and ring topology on and off the campus. It is recognized that this volume of change and expense cannot happen at once; therefore, this plan still maintains some traditional campus philosophies in the placement and quantity of infrastructure. The routing of this infrastructure will remain consistent even as the campus moves towards all communications devices being just another node on the network.

This communications technology building plan must remain a living guide, evolving and reducing recommended pathway capacities, as the campus develops to one network serving all configurations.

Note: Information was provided by DataCom Design Group, LLC.
~ NATURAL SYSTEMS ~
Runnel

The combination of steep grades with a high percentage of impervious surfaces creates a stormwater and runoff condition at Texas State that should be improved. In addition to detention basins, two steps are recommended for different conditions: runnels and infiltration gardens. If possible, downhill runoff should be diverted to stable areas across the existing landscape. Where runnels are needed, they should remain dry but be positioned to collect runoff as it moves downhill.

As an additional measure, check dams can be positioned incrementally to hold water and allow it to infiltrate in place. These check dams can be either permeable or impermeable. Vegetation tolerant of wet and dry conditions should be used to allow the plant roots to act as a stabilizer and slow water movement. Side cuts into the adjacent bank should be made if possible to divert water.

Infiltration Garden

Infiltration gardens are swales, or a dip in the grade, which are planted with water tolerant plants. They do not direct water, but hold it and allow it to gradually infiltrate in-place. Sediment and stormwater run-off are caught in the swale. Gradual infiltration of water and nutrients and the roots of plants growing in the swale slowly improve soil structure down-slope. Infiltration gardens tackle runoff at its source beginning at the grade high point. They are implemented incrementally down slope parallel to grade.

Arboretum

Establishing an arboretum on a campus affords the opportunity to create a “living laboratory” where visitors can identify plants through labels, guide maps or other interpretive materials; where faculty and students can display works of art; where ecology/biodiversity and urban horticulture research can be conducted; where natural areas can be preserved; and where distinct and positive impressions of the campus (appearance) will be formed by potential students. Texas State has academic and research programs in Agriculture, Biology and Geography that would fit “hand-in-glove” with the establishment of an arboretum on campus. Therefore, a serious commitment should be made to designing and implementing an arboretum. The arboretum is designed as a piece of the Campus Walk infrastructure and will run the length of the walk from Blanco Hall to Bobcat Village.

Arboretum

Art defines the times and dreams of its maker. Education is a primary agent of acculturation and art is closely linked to a well developed sense of shared culture. Thus public art will be a component of the landscape of Texas State. It will contribute to engaging the University community in the discovery of and discussion about the public art on campus which will be located in part by the Master Plan. Also, while Texas State will place many permanent installations, it is also appropriate to locate temporary sculpture installations.
Regional Topography

The location of the campus at the intersection of two of the state’s major ecological and topographic regions, the Edwards Plateau and the Blackland Prairie, and next to the origin of the San Marcos River, creates a place that is striking in its beauty and its contrasts. Limestone and other sedimentary rock formed a plateau that is higher than the land that surrounds it and is known as the Hill Country. Under a thin layer of soil, the limestone bedrock of the Edwards Plateau is made up of karst geology, or erosion-prone rock that leads to the creation of caves and sinkholes. Rainwater seeps into the ground through these holes and combines to form the Edwards Aquifer that feeds the San Marcos River.

Campus Topography

The older, core campus sits atop the edge of the Edwards Plateau. From here the landscape drops 100 feet over 300 feet to the Blackland Prairie and the San Marcos River. This dramatic grade change sets the stage for views in and out of the campus, as well as creating challenges for stormwater management, building siting, landscape maintenance and accessibility. New buildings are to be sited to maintain current viewsheds, taking advantage of more buildable sites and providing accessible main entries. Stormwater and landscape strategies are to be implemented to retain water on site, allow water to infiltrate into the local recharge system, and provide landscape with a lower day to day maintenance requirement. Open space will be designed to provide a central, accessible pedestrian spine through the campus.

Stormwater Management

The combination of steep grades with a high percentage of impervious surfaces creates a stormwater and runoff condition at Texas State that needs to be addressed as the open space portion of the Master Plan design is implemented. Improved stormwater management will have a positive impact over time on Texas State itself and also on the greater regional ecosystem. In addition to the proposed Storm Drainage Ten Year Improvements, two steps are recommended as visible indicators that the campus is moving towards a more ecologically sound condition: runnels and infiltration gardens. Runnels collect stormwater runoff at the edges of the campus before it reaches nearby paved areas. Infiltration gardens tackle runoff at its source, beginning at the top of grade, and are implemented incrementally down slope.
1. Texas State is located over the Balcones Escarpment that extends through the eastern part of Hays County. The Balcones Escarpment separates the Edwards Plateau Land Resource Area and the Blackland Prairie Land Resource Area.

2. The San Marcos River runs through the campus and provides a great deal of the natural features that Texas State is known for. The San Marcos River is fed by San Marcos Springs.

3. The following endangered species and unique aquatic plant communities have been identified as possibly existing within the Texas State University-San Marcos area.

 - **Texas Blind Salamander** (*Typhlonolge rathbuni*): inhabits the underground streams and caves of the Edwards Aquifer reaching the surface only when swept there by outflow or pumping.
 - **San Marcos Salamander** (*Eurycea nana*): lives and feeds in the subterranean algae growing in the spring-fed pool under San Marcos.
 - **Fountain Darter** (*Etheostoma fonticola*): quite common in the San Marcos and Comal Rivers of central Texas. It is found nowhere else in the world.
 - **San Marcos Gambusia** (*Gambusia georgei*): restricted to a few miles of the San Marcos River downstream from the head waters. The last Gambusia captured in the wild was taken in 1982; despite considerable effort, no further Gambusia have been found and the species may be headed for extinction.
 - **Texas Wild Rice** (*Zizania texana*): an aquatic perennial, 3 to 7 feet tall, growing below surface in swift water with only flowering stalks above, or upper stems and leaves above the surface in slow water; stems rooting at joints.

4. A majority of the Texas State campus is located on the eastern margin of the protected zone of the Edwards Aquifer known as the Transition Zone. The other portion of the University (approximately 22 acres) is located on the Edwards Aquifer Recharge Zone. Development in the Recharge Zone requires adherence to special regulations.

5. There are wetlands located along Spring Lake, Sink Creek and the San Marcos River.

6. Many historic and archeological sites have been found and reported to the Texas Historical Commission including approximately 15 sites that are located on or near campus grounds.

Existing Conditions

Ten Year Improvements

1. While construction in the transition zone is not regulated by the Texas Commission on Environmental Quality (TCEQ), care should be taken to keep this area as environmentally friendly as possible to help preserve the quality of the water flowing into the recharge zone.

2. Construction in the Recharge Zone is regulated by TCEQ and will require a Water Pollution Abatement Plan including a Geologic Assessment, that must be filed with the TCEQ prior to initiation of construction.

3. Initial review indicates that construction of proposed Master Plan facilities are not located within existing wetland areas. Any construction within wetland areas will require a Section 404 of the Clean Water Act permit issued by the United States Army Corps of Engineers.

4. Prior to construction of any proposed facilities, an Archeological Evaluation should be conducted to identify possible historic and archeological deposits.

Note: Information was provided by Halff Associates, Inc.
~ Interventions ~
INTRODUCTION TO THE INTERVENTIONS

The images on the left (before) and far left (after) show the extent of the interventions that are being proposed to the southern edge of the campus in the long-term vision.

The plans below (before) and below opposite page (after) represent these changes in plan form. The primary gesture is the widening of Concho Street for two blocks creating a green open space. The green aligns with the axial relationship between the Admissions building to the west and the Theatre Center to the east.

The southern side of Concho Street between LBJ and Guadalupe is being privately developed as a mixed-use project with retail and office space. With the intervention of the new Concho Green and mixed-use development, students will be drawn to the south from the center of the campus. The ultimate long-term goal being to seamlessly connect the Texas State campus with the San Marcos courthouse square creating a vibrant college town district.
The Master Plan proposes Moon Street be the main southern entry onto the campus. The large surface parking lot that currently exists between Moon Street and the water bodies shall be replaced with pervious vegetation, following the ‘gray-to-green’ concept that underlies the Master Plan. The view of Old Main is now presented to the first time visitor in the same manner it was when it was first built - a symbol of the University on top of the hill.

The image on the right (before) and the far right (after) shows the removal of the surface parking lot. This permits the academic community access to the water, as well as bringing the much desired environment of Sewell Park closer to the Texas State campus.

The east-west spine of Woods Street terminates at a site designated for public art within the newly created park located to the south of JC Kellam.
With Moon Street being designated as one of the main entrances from University Drive, the site on the corner of Moon Street and University is a critical site as visitors arrive at the campus. Currently occupied by Falls Hall, a residence hall that will be demolished and rebuilt elsewhere, this site is designated for the new Fine Arts and Communication Center.

The new building shall address the critical corner and create a gesture that welcomes both the city residents and academic community.

The photograph on the right (before) and the rendering on the left (after) depict the open relationship the new building will have with the natural vegetation. From the lobby of the new building one is aware of the water bodies and the existing Theatre Building.

The photograph on the far right (before) and the rendering on the opposite page (after) show the new building as seen from Moon Street, illustrating the building’s relationship to the corner. The drawing also shows the importance of the building as it frames the foreground for Old Main in the background.

Seen in the existing photograph, opposite page, is the existing brick wall that runs down University Drive. It shall be demolished, making way for the Fine Arts and Communication Center to relate directly to the street.

The northern edge of the building forms a clear straight edge to the new Concho Green. This will be the University face of the building. An arcade, shown in orange, is proposed on this facade to provide shade and shelter for pedestrians.

The western edge of the building addresses Edward Gary providing service access to the building, as well as access to a parking garage, which is located mid-block to the west.
The six images on this spread show the proposed vision for transforming Bobcat Trail from a vehicular thoroughfare to a pedestrian only corridor. Given that the Quad gets extremely congested, Bobcat Trail is seen as a viable alternate east-west connection through the campus. It connects the new McCoy College of Business Administration Building with the Academic Services Building to the east.

The aerial photograph on the left (before) and the rendering on the far left (after) depict the ‘gray-to-green’ transformation through the removal of surface parking and an unnecessary wide road from the center of the campus.

The new Undergraduate Academic Center is seen midway to the south of this proposed pedestrian trail. A new transit bus hub is proposed on the side of the building on Guadalupe with a turn-around for buses. The west end of the trail terminates at a semi-circular plaza in front of McCoy Hall, the new building for the McCoy College of Business Administration, as shown on the opposite page (bottom right).
The photograph on the right (before) and the rendering on the far right (after) show the transformation of Bobcat Trail just south of Flowers Hall. A new terra cotta paver and brushed concrete pathway is proposed to add texture and color to the pedestrian walkways replacing the aggregate concrete walkways that dominate the campus at present.

Rows of trees are proposed along this pedestrian corridor adding much needed shade to the campus. A water fountain is also proposed south of Flowers Hall, creating a marker, an identifiable meeting place, and an opportunity for public art to enhance and beautify the campus.

Additionally, a student drop-off with a turn-a-round is proposed at the end of North LBJ (shown in the plan below), adjacent to Bobcat Trail. The drop-off is located between Nueces and Beretta Hall, permitting students easy access to this east-west pedestrian corridor. To the north of the Commons Hall service drive, Edward Gary will be a pedestrian corridor accessible for service and emergency vehicles.

A diagonal spine connects the LBJ Student Center downhill towards the intersection of Woods and Guadalupe.
The Master Plan identified several areas of the campus that were not being utilized at their highest and best use. One of these areas is just north of the LBJ Student Center. The roadway leading to the entrance shall be re-configured as an oval loop creating an identifiable green open space defined by new buildings. The new open space runs north-south from the LBJ Student Center to the Student Health Center to the north, the goal being to transform this vehicular oriented space to a pedestrian friendly space with an efficient transit bus hub. Additionally, the lowered speed on the thoroughfares within the campus provides a safer environment for pedestrians and bicyclists.

The rendering (left) also illustrates a series of three story buildings that help define the open space while maintaining a low scale on the campus.

There currently exists a bus hub adjacent to the parking structure. However, it is not a comfortable space to occupy while waiting for a bus. The rendering, far right, illustrates how this space can be transformed in the short term by adding canopies to the parking structure that will provide shade and shelter for transit passengers.
To encourage students, faculty, and staff to use transit, the experience should be made as comfortable, convenient, and efficient as possible. At most campuses an increase in transit usage requires a change in attitude. The University must provide incentives, as well as tip the scales economically, to discourage car usage by charging a fair market rate for parking.

All bus transit hubs should be retrofitted with canopies and benches that provide shade and shelter for transit users waiting for a bus. The addition of services and conveniences, such as newspaper stands, at the hubs will help reduce the perceived time wait.

On the following pages, several small interventions are proposed for the Texas State campus that help make the experience of walking through the campus or using transit more comfortable and efficient.
Constructing infill buildings within the historic core of the campus is a viable strategy for keeping the campus compact and walkable. The Master Plan strives to find opportunities where infill buildings can be added without compromising the scale and openness of the campus. One such opportunity is the addition to Derrick Hall that will replace the wing that is scheduled to be demolished.

The footprint of the Derrick Hall wing is undersized making the adaptive reuse of this space unfeasible. Additionally, the location of the wing blocks the axial view between Old Main and the Alkek Library. (Additional information on this study can be found in the Appendix.) This intervention proposes the demolition of the wing and replacement with an addition located to the east in the area next to Taylor-Murphy History. The plan drawings above show the wing demolished and the new addition built to the east.

The photograph on the left (before) and the rendering on the far left (after) depict the site infilled with a building that is sympathetic in style with Taylor-Murphy History. The new building addition aligns with the facade of Taylor-Murphy History continuing the edge definition of the Quad.
The proposed site for the Undergraduate Academic Center is one of the most prominent sites on the Texas State campus. The site is located to the east of the termination of Guadalupe, where Woods Street jogs to the south (opposite page left map).

At the termination of Guadalupe Street a new transit bus hub is proposed. The new building, with its arcade on the Guadalupe Street facade, will provide a sheltered place to wait for buses. This zone will become a new center for students being located adjacent to the east-west spine of Bobcat Trail and just to the southeast of the Alkek Library.

The rendering on the right (after) depicts the site infilled with a building that is sympathetic in style with Taylor-Murphy History. The photograph (opposite page left) shows the existing conditions. The tower on the southwest corner of the building terminates the axial view eastward from Woods Street and marks a significant entry point into the campus from the south. The tower will be seen from the courthouse square, and vice versa, the dome of the courthouse is visible from this prominent site.

The plan images, opposite page left and right, show before and after views of the new courtyard building on the site. It will replace the Campus Christian Community Center and surface parking.
One of the observations made through the master planning process was that there was very little shade provided on the campus. Buildings designed for this campus are not climatically responsible and they do not help shelter pedestrians. The choice of installed streetscape elements makes it difficult to actually get shade from a tree. One such example was on the Quad next to Evans, where a metal fence prevented pedestrians from walking close to or under the trees as illustrated in the left photo.

This intervention suggests removing the fence, providing grates around the trees, and adding a canopy along the blank wall of Evans. The canopy will provide shelter to students who may be waiting for class change. Additionally, students traveling north from LBJ to the Quad can take shelter under this canopy in inclement weather.

The design of these canopies should be consistent with the architecture of the adjacent structures.
A consistent issue that needs to be addressed in siting a building on campus is the front versus back. The front is where the main entry is located and the back is usually where the service is located.

In the case of the Mitte Complex, the service zone is located along Comanche Street. This makes sense as the service area needs to be adjacent to a thoroughfare. In the proposed development of the north campus within the Master Plan this presents a problem, as this existing service area will be in view from the main entries of proposed buildings.

This intervention proposes a colonnade screen along Comanche to act as a screening device, as well as a shaded bus stop for students using the transit bus system.

Over time, the wooden trellis will be covered with flowering vegetation forming a beautiful addition to the north campus.

The design for this trellis was inspired by similar screens seen at the Lady Bird Johnson Wildflower Center.
Urban design strategies often strive to visually terminate axial vistas. The terminated vista is a frontal view, which is quite different from viewing a building that may line a street, that being an oblique view. Historically, it was a great honor for an architect to be chosen to design a building that would terminate a vista, as it was a commission reserved only for the most revered designers.

The termination of Sessom at the Student Recreation Center offers this unique condition on the Texas State campus. Since the building is slated for an addition, it will provide an opportunity to re-compose this facade.

The photograph on the left (before) and the rendering on the far left (after) show the possibility of realigning Sessom and Academy to make a ‘T’ intersection with a stop sign. This change in the street system will help reduce speed, stop traffic, and make a safer environment for students who are using the recreation building.

The drawing also suggests the addition of an arcade running the length of the Academy Street facade creating a sheltered space for students and other building users.
The Master Plan proposes a new parking structure to the northeast of JC Kellam on the site of an existing surface parking lot. This parking garage replaces the surface parking spaces that are to be moved from the Moon Street parking lot to the southeast of JC Kellam.

Along with the building of this garage, an opportunity exists to straighten and correct an awkward street condition that exists, where State and Peques Streets do not align with each other as they both intersect Sessom. This creates a dangerous traffic condition.

The intervention re-aligns Peques and State Street and adds a traffic light and center landscape median to Sessom. The reconfiguration permits motorists traveling west on Sessom to turn onto campus at this intersection and enter the new garage on the second level.

The garage is also accessible from the south for motorists entering the campus from Moon Street. These vehicles travel through an underpass below the JC Kellam rear porch to access the garage.
Texas State is a residential campus historically requiring freshman and sophomore students to live on campus. The University is committed to providing a range of prices for residence halls to meet the varying economic needs of the students. There is enough capacity in the residence hall system with the addition of Bobcat Village to meet the need to house students during this ten year period. The residence hall system capacity is 5,370 students with additional capacity at Bobcat Village of 660 students, for a total capacity of 6,030. It was determined that if any hall was demolished the capacity would need to be replaced. It was also determined that if any university-owned apartment complex was demolished the capacity would not be replaced.

The proposed Fine Arts and Communication Center and Garage on the south part of campus requires the demolition of two residence halls: Falls and Sterry. These two halls have a capacity of 800 students and need to be replaced before demolition could occur. The two building sites identified for replacement halls are at the parking lot at the corner of Comanche and Sessom streets and on the existing Hornsby/Burleson Hall sites. With the exception of Elliott Hall, no other halls will be demolished during the ten year period or until the debt service has been paid. Reserves and planned renovation revenue would continue to be used to upgrade and maintain the other residence halls in the system.

In surveying students who lived in the older halls, they expressed sentiment and preference for the intimate quality of the courtyards and the low scale buildings. In siting the replacement residence halls, the Master Plan strives to keep the intimate scale found in the older halls while providing all the modern conveniences that students want to have. The photograph above shows one of the existing courtyards and the rendering on the far left shows a modern interpretation of a residential courtyard within the residence hall complex.
The beauty of Texas State can be found in some of the historic buildings on the campus. These low-scale buildings, with their white stucco walls and red tile roofs, add a distinctive character to the campus. In surveys of the University community these are the most revered buildings on campus. Unfortunately, the spaces around these historic buildings have been invaded by surface parking, destroying some of the character and compromising the beauty of these buildings.

The Master Plan strives to reclaim as much open space as possible by converting these surface parking lots into green courtyards. The space to the south of Commons Hall, defined by Laurel and Brazos Halls, is deemed an ideal space to be transformed into a courtyard garden.

The aerial photograph on the right (before) and the collage on the far right (after) show the ‘gray-to-green’ transformation. Character change on a campus occurs incrementally and over time and this is a small gesture that can be used as an example to illustrate the possibilities.

The new garden courtyard continues to permit the necessary service access to the surrounding buildings.
Another revered building on the Texas State campus is the Undergraduate Admissions Center. This low-scale historic building terminates Concho Street with its white two-story portico.

For a building of this stature, the primary entry along Guadalupe Street is underwhelming (as depicted in the picture on the right). This intervention suggests the addition of a grand entry staircase on the axis of Concho Street along Guadalupe which is part of the Ten Year Implementation Plan. The existing retaining stone wall is interrupted by wide stairs that mediate the change in level between Guadalupe and the front lawn of the Undergraduate Admissions Center.

Parallel parking on Guadalupe Street is eliminated for fifty feet centered on the stair axis to create a wider sidewalk on the entry axis. The addition of the stairs and the widening of the sidewalk, permits a visual connection between the building and the proposed Concho Green.

The before (below) and after (below right) site plans show a proposed circular precinct of green around the Admissions building, creating a natural landscape base for the building. The surface parking on the property is relegated to the rear of the site and the curb cut along Guadalupe is eliminated.

This intervention is in keeping with the underlying goal of the Master Plan, to reclaim as much open space as possible by converting surface parking lots into green open spaces.
EAST/WEST CONNECTION ALTERNATE AND ALKEK LIBRARY EXPANSION

EAST/WEST CONNECTION ALTERNATE

The President’s House is located on the western side of the Texas State campus along the major east-west pedestrian spine. To maintain security and privacy for the residents, the Master Plan proposes demarcating a circular walled and gated precinct around the house, enclosing approximately 2.5 acres of land.

The circular precinct also encloses a small private surface parking lot for the President’s guests, as well as access to the home’s private garage.

Students walking along the east-west spine will have a clear pathway to follow along the southern route of the semi-circular pathway.

If at some time the Board of Regents decides to use the land allocated to the President’s House for buildings, the site is capable of accommodating five new academic buildings, including a parking structure between the Family Consumer Sciences Building and the Mitte Complex. This alternate is shown in the circular bubble on the left.

ALKEK LIBRARY EXPANSION

During the course of the master planning process it became evident that the Alkek Library required expansion for additional exhibition and storage space.

The existing form of the building and the surface treatment of the facades makes it difficult to add an addition to the building. Any addition to this monumental building would look insignificant and feel like a mistake.

Given the requirements for the additional space expansion should occur on the lower level of the library toward the west, in the small and inefficient existing parking structure. At present the shape of the parking lot below the plaza is not conducive to efficient parking bays. The loss of these 100 plus spaces could easily be replaced. A better use for this space would be an addition to the Alkek Library.