~ Guidelines ~
The Texas State University-San Marcos design guidelines are intended to aid in the design, development, and character of the campus. These guidelines will be incorporated into the University construction standards. Over the past decades several non-compatible and non-contextual buildings have been built on the campus. These guidelines attempt to facilitate consistency.

Sixteen developable sites are identified on the following pages. The guideline diagrams predominantly address the morphology of future buildings to be built on the campus. The overall massing of the structure plays a critical role in the definition of outdoor rooms and public spaces within the campus. Additionally, the building disposition, or where the building is positioned on the site, helps define the edge of the public space.

The guidelines also suggest primary and secondary entries into the buildings as well as service zones. The overall emphasis is on the creation of a pedestrian friendly environment. Service vehicles and loading docks should be located in a manner so that they have minimum negative impact on the aesthetic quality of the environment.

The height of proposed new buildings should be contextually sensitive to existing adjacent structures to maintain the human scale of the campus. Buildings over five stories should be avoided.

A schematic diagram identifying utilities is provided to assure awareness of potential constraints and opportunities as they may relate to each site.

All sites on the campus are part of an interwoven network of pedestrian pathways, bicycle trails, bus routes, and vehicular access thoroughfares. Every new building must interact and respond to this pedestrian and vehicular network.
URBAN DESIGN GUIDELINES
SITE LOCATOR

DESIGN GUIDELINES FOR SPECIFIC SITES

1. Undergraduate Academic Center
2. Fine Arts and Communication Center
3. Family and Consumer Sciences Addition
4. Derrick Addition
5. Academic Building - Elliott Site
6. University Drive Liner Building
7. Housing - Comanche and Sessom
8. Housing - Hornsby/Burleson
9. Greenhouse
10. Cogeneration Plant Addition
11. Student Recreation Center Addition
12. Alumni Center
13. Matthews Street Parking Garage
14. Speck Street Parking Garage
15. Fine Arts and Communication Parking Garage
16. State Street Parking Garage
Spatial definition is achieved when adjacent facades are aligned in a coherent manner and the defined space between the two buildings does not exceed a certain height-to-width ratio. The proportion of spatial enclosure is related to the height-to-width ratio. The tighter the ratio, the stronger the sense of enclosure and the sense of place.

The proposed massing of the 4-story Undergraduate Academic Center suggests that the new building works in harmony with Evans, Retama, and Nueces to define and enclose the public space to the north and west.

The massing diagram permits the vista on Woods Street to be terminated at a figural element, such as a tower at the southwest corner of the building. In the best practices of urban design, vistas should be significantly terminated and not left to chance or happy accident. This structure is demanding as there are few buildings worthy of sustaining the importance of an axial termination; however, the Undergraduate Academic Center may be one of them.

A highly desirable but elusive attribute of urban design is the creation of a sense of place. An effective sense of place may be created by the judicious assemblage of a set of interdependent elements. A figural element such as a tower, a transit hub, an arcade providing shade and shelter, the termination of Guadalupe at the base of the Alkek Library building, or a site with a prominent view of the town - synergistically assembled - may have the energy to create a 'place' on the Texas State campus.

The building shall hold the three open edges of the site. Given the depth and width of the site it is conceivable that the building will have a central courtyard.

A comprehensive Transportation Master Plan can be found on pages 40-41. Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The defining elements of a public space are the building facades that front onto the space. Similar to an interior room that is defined by the walls, an outdoor space is defined by building facades. Adjacent building facades may have similar materials and height to visually connect them and result in continuity of space.

The 4 story Fine Arts and Communication Center has multiple roles to fulfill within the campus Master Plan. First, it plays a crucial role in the spatial definition of the axial mall that connects the current Theatre Center and the Undergraduate Admissions Center. Second, it is the initial impression, a visual marker, and the front door to the campus as one approaches from University Drive and Aquarena Springs Drive. Third, located at the edge of campus the building must welcome the San Marcos community.

The building massing envelope suggests that the building will have a planar facade on the north to define the open space and that the fly tower be located to the west.

Disposition

This disposition diagram suggests the placement of the building on its site. Placement is determined by setback or build-to requirements measured from the site boundary lines.

The diagram suggests that there be no setback on the north and west sides of the building. The southeast corner may be eroded to create an entrance.

There are three levels of building disposition. The building must define the north and west streets. The bulk of the building is located in the center of the site and the southeast corner may be left open.

Entrance and Service

Given the nature of this building there may be multiple points of entry; however, the primary public entrance to the building must occur on the southeast corner of the site. The diagram suggests secondary entrances on the north and south facades. All service must occur of the west side on Edward Gary Street, with the primary service bays located mid-block to minimize visibility from the two east-west streets that flank the site.

Transportation Network

A comprehensive Transportation Master Plan can be found on pages 40-41.

Infrastructure

Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The URBAN DESIGN GUIDELINES for the FAMILY AND CONSUMER SCIENCES ADDITION outline the following:

Height and Massing
- The design for the new 2-story addition to the Family and Consumer Science building shall be viewed as an exercise to complete the entry courtyard. The result shall be a symmetrical building centered around the existing courtyard. A mature tree inhabits this entry courtyard and every effort should be made to preserve this tree. The proposed massing, height, and materials for the addition draw their clues from the existing building.

Disposition
- The disposition of the new addition to the Family and Consumer Science building shall be symmetrically centered around the existing courtyard.

Entrance and Service
- Service to the new addition shall be limited to the northeast edge of the building, and entry into the addition shall be from the courtyard.

Transportation Network
- A comprehensive Transportation Master Plan can be found on pages 40-41.

Infrastructure
- Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The 4 story Derrick Hall Addition replaces the existing wing to the south that is proposed to be demolished. Demolition of this southern wing opens the visual corridor from the Quad to the Alkek Library.

The width of the new addition is limited by the location of the Taylor-Murphy History building located to the east. Another limiting factor is the topography that drops dramatically from the north side to the southern Quad edge of the building.

The proposed massing and height of the new addition shall mediate between Derrick Hall and Taylor-Murphy History.

The disposition of the Derrick Hall addition takes its clues from the two existing buildings that flank the addition to the east and west.

The diagram indicates that the minimum depth of the building shall be based on alignment with the Quad facade of Derrick Hall and alignment with the north facade of Taylor-Murphy History.

The maximum depth of the building shall be based on alignment with the Quad facade of Taylor-Murphy History and alignment with the north facade of Derrick Hall.

It may not be necessary for this building to have a primary entrance given that it is an addition; however, if there is to be a primary entrance, it shall be located on the southern facade facing the Quad. All service shall be relegated to the northern side of the building shielded from the public realm of the quad.

A comprehensive Transportation Master Plan can be found on pages 40-41. Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The proposed 5-story Academic Building on the Elliott Hall site derives its height and massing from its adjacent neighbor, the newly constructed McCoy Hall College of Business Administration. The pair of buildings form the northern edge of a semi-circular outdoor space. This outdoor room marks the western termination of Bobcat Trail, an east-west pedestrian corridor that connects the McCoy College of Business Administration to the Academic Services Building.

The proposed building nestles up against the elevated pedestrian mall to the north, placing it in close proximity to the LBJ Student and Visitor Center.

The disposition of the proposed Academic Building on the Elliott Hall site mirrors its adjacent neighbor, the newly constructed McCoy Hall. Ideally, the southern facade of the new building shall be the same width and height as the McCoy College of Business Administration building forming a symmetrical pair of buildings.

The primary entrances to the building shall be on the southern facade and on the northern corner, at the pedestrian mall level, across from the entrance to the LBJ Student Center. Service shall be provided from the northwest corner in the existing lower level garage that services the Alkek Library.

A comprehensive Transportation Master Plan can be found on pages 40-41. Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detailed reports can be obtained from the University.
The proposed new liner building along University Drive is located adjacent to the Alumni House screening the proposed garage that will service the new Fine Arts and Communication Center.

The height shall be a maximum of 3 stories and the vertical articulation of the facade no wider than 25 feet. The scale, massing, and height of these row-house-like buildings shall respond to the historic Alumni House.

The liner building may be built incrementally, so as to have an authentic feeling, with the first building phase being for the Telecommunication Services building.

The setback from University Drive shall be a maximum dimension of 10 feet from the right-of-way. The combination of the liner building and Fine Arts and Communication Center together form a continuous street wall along the thoroughfare. This building line demarcates the southern most edge of the University addressing the City of San Marcos.

The depth of the building is determined by the program of uses and requirements for natural light, as this building backs up to the garage.

The primary entrance to this collection of buildings shall be from University along the southern edge of the site. A secondary entrance is accessible from the garage.

Service will be from the rear, the north, and the structured parking garage.

A break in the massing is indicated in the diagram above, providing a potential exit drive-through from the garage to the street.

A comprehensive Transportation Master Plan can be found on pages 40-41. Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The proposed housing complex, to be located on the corner of Comanche and Sessom, shall be one of the northern most complex of buildings, defining the northern edge of the campus. The complex is envisioned as three to four separate buildings, each a maximum of 5 stories high, that will define an internal courtyard.

The strategy for this building complex is to locate buildings at the edge of the designated site to maximize the size of the internal courtyard. The courtyard is a communal space for residents to use and socialize in. The buildings may vary in size, material, and style to form an eclectic composition of buildings.

The primary facade and building orientation is from the south, as the site drops downhill along the northern edge towards Sessom.

As the diagram suggests, the building disposition shown favors a courtyard type building, with the bulk of the buildings defining the edge of the site and a large open-to-sky central courtyard.

The diagram also suggests a break in the southern facade of the building that aligns with Gaillardia Street, creating a visual and physical connection between the complex’s courtyard and the central east-west pedestrian spine of the University campus.

The primary entrances into the complex shall be from the south. Service entries to the complex shall be along the western edge along Comanche, opposite the service entrance of the Mitte Art building. Additional service entries may be provided at the northeast corner of the site.

A comprehensive Transportation Master Plan can be found on pages 40-41. Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The massing of the proposed housing complex to be located on the Hornsby and Burleson Hall site is orientated at a diagonal generated by its location on top of the hill.

The plan calls for a grand set of stairs rising from the corner of LB and Pickard toward a courtyard that is defined by a “U” shaped composition of buildings. A major bus drop-off is proposed for this corner with a circular turn-around.

The inspiration and precedent for this courtyard space is Michelangelo’s Campidoglio in Rome. The dimensions of the courtyard and angles of the proposed building massing are directly derived from this precedent.

The height of this complex is limited to 3 stories; however, given its prominent location on top of the hill, the buildings will have a large impact on visual character of the campus.

The strategy for this building complex is to locate buildings on the edge of the designated site so as to maximize the size of the internal courtyard. The courtyard is a communal space for residents to use and socialize in. From this courtyard residents will be afforded a view of Old Main, seen rising above Centennial Hall.

The diagram suggests a building disposition that creates a specific shaped courtyard based on an historic precedent. The courtyard opens to the southeast on axis with the grand outdoor staircase that connects to the corner of LB and Pickard.

The diagram also suggests a collection of three buildings. Economy may dictate that the assemblage be one contiguous building. The bulk of the buildings is pushed outward, towards the edge of the site, affording a courtyard that is identical in size as that of its precedent.

Unlike the suggestion to vary the building size and style of the housing complex at Comanche and Sessom, this composition of buildings shall be similar in size, material, and style.

The primary entrances into the complex shall be from the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.

The primary entrances shall be the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.

The primary entrances shall be the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.

The primary entrances shall be the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.

The primary entrances shall be the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.

The primary entrances shall be the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.

The primary entrances shall be the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.

The primary entrances shall be the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.

The primary entrances shall be the courtyard. The primary entrance being on the diagonal axis of the courtyard.

Service entries shall be located to the northwester, and shall not be visible from the public courtyard.
The proposed one story greenhouse is in addition to the existing Science Greenhouse located to the west of this site. The building is sited to anchor the corner of Comanche and Vista.

The building disposition favors anchoring the corner, and as the building program increases the building form moves westward.

The primary entrance into the greenhouse is from the south and/or the corner, with service located to the west.

A comprehensive Transportation Master Plan can be found on pages 40-41.

Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The addition to the Cogeneration Plant is split into two volumes. One is attached to the existing building and the second is free-standing, located to the west of the existing building (shown in the dotted lines).

The attached addition on the west facade shall be equal in height to the original building. It will house another 2,000 ton chiller.

The free-standing building located to the west is to be used for chemical storage, maintenance and office space, and shall be three-stories high.

The building footprint to the east of the Cogeneration Plant allows for a possible third building; however, the topography is challenging.

For the building addition on the west facade, a service entry needs to be located on the south facade, adjacent to the existing loading dock.

The entry to the free-standing building should be located on the east facade.

The new road allowing service to this building will require relocation of equipment located on the east side of the building. A comprehensive Transportation Master Plan can be found on pages 40-41.

Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The 2 story Student Recreation Center Addition is located to the northwest of the existing Recreation Building on Academy and Read.

An opportunity exists to have the new composition act as the termination of the vista from Sessom. The Plan suggests that the intersection of Sessom and Academy be a 90 degree intersection with a stop sign. A figural vertical element shall terminate the vista and axially align with Sessom.

The composite massing of the building favors a central entrance also axially aligned with Sessom.

The new facade along Academy shall act as a screen wall and integrate the old and new buildings, unifying the composition so as to read as one building. The potential exists to have an arcade run the length of the building facade.

The building disposition diagram suggests that the main bulk of the building be located to the northwest of the existing building. The new addition aligns with the existing building on the Academy facade.

The primary entrance is located at the center of the Academy facade. Given the size and scale of the building, several secondary entries may also be designated along the Academy facade. Service is located at the rear of the building on the southwest side of the addition. No service and loading bays shall be visible from the main thoroughfare.

A comprehensive Transportation Master Plan can be found on pages 40-41.

Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The 2 story Alumni Center shall be located at the corner of Aquarena Springs Drive and Charles Austin Drive. The primary entrance and massing of the building favors a corner entrance with a corner tower element. The building massing screens the structured parking garage that is proposed to be built on Charles Austin Drive in the long term vision.

The building disposition diagram suggests that the main bulk of the building be located on Aquarena Springs Drive. If a larger footprint is required, the building takes on an 'L' shape.

The primary entrance is located on the corner with service located at the rear of the building, out of view from Aquarena.

A comprehensive Transportation Master Plan can be found on pages 40-41. Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
This 4-story parking garage is to be located on a steep site between Buckner and Matthews Street. Given the topography of the site, the garage may be built without any internal ramps and three access points along Matthews.

It is anticipated that the parking garage may be built in an early phase, with provision for an academic building or residence hall to be built above the garage at a later phase.

The disposition of this parking garage is based on a 65’ module, with the smallest garage being 130’ x 200’. The proximity of this site to the core of the campus makes it an ideal candidate.

The primary entrance into the parking garage is from the south along Matthews. The garage may be exited from the north onto Buckner.

A comprehensive Transportation Master Plan can be found on pages 40-41.

Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
This Speck Street Parking Garage is to be located on the northwest corner of the campus, to the south of the water tower. The garage shall not be more than 4 stories in height.

The disposition of this parking garage is based on a 65' module, with the smallest garage size being 130' x 200'.

The primary entrance into the parking garage is from the southeast along Speck Street. The garage shall be exited from the north onto Academy.

A comprehensive Transportation Master Plan can be found on pages 40-41. Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
The Fine Arts and Communication Parking Garage is a mid-block structure that is accessed from Edward Gary.

The 5 story garage shall be surrounded on the north and south by ‘liner’ buildings. A liner building is a building conceived specifically to mask a parking structure from the public realm. Liner buildings are generally shallow in depth, as their main purpose is to act as a mask or a screen.

The disposition of this parking garage is based on a 65’ module, with the smallest garage being 130’ x 200’. The adjacent proximity of this site to the Fine Arts and Communication Center makes it an ideal site for a garage.

The primary entrance into the parking garage is from the east along Edward Gary. The garage may be exited from the south onto University Drive.

A comprehensive Transportation Master Plan can be found on pages 40-41.
THE STATE STREET PARKING GARAGE

Height and Massing
The State Street Parking Garage is a structure located immediately northeast of JC Kellam that is accessed from Sessom and State Street, as well as from Moon Street to the south.

The garage shall not exceed 4 stories. It will be screened from Sessom by vegetation.

Disposition
The disposition of this parking garage is based on a 65’ module and is located on the existing surface parking lot that occupies the site.

Entrance and Service
The northern entry into the parking garage is from the northwest corner from State Street. The State and Peques Street intersection shall be aligned. Due to the topography this northern entry shall bring cars into the second level of the garage.

The first floor entry into the parking garage will be from the south via Moon Street under the JC Kellam bridge.

Transportation Network
A comprehensive Transportation Master Plan can be found on pages 40-41.

Infrastructure
Manholes and Tunnels
Steam
Electric
Sewer
Wastewater
Communication
Gas
Water
Hot/Cold Water
Irrigation

Infrastructure recommendations can be found on pages 45-48. Drawings of current infrastructure conditions and detail reports can be obtained from the University.
While the Texas State campus does not have a single, strong, coherent architectural vocabulary, it does have historic buildings such as Old Main that have great symbolic value. The design of new buildings within the campus is an act that needs to be carefully considered. In order for new buildings to be integrated into the existing fabric, care must be taken to understand what has already been built, the circumstance that made it possible, and how it impacts the overall campus environment.

With the creation of new buildings comes the opportunity to be critical and offer ways to improve upon precedent. The creation of new places and spaces on the campus should be an occasion to re-affirm what it means to be on the Texas State campus, and appreciate what a campus in the hill country can be. The text aspires to provoke a discourse about what it means to design buildings in a particular place. The various guidelines in this section are conceived as part of a precedent study and as part of a typological study - both essential to the process of designing buildings.

The character of the architecture on a campus reinforces the idea of pedestrian scale. Buildings shall be articulated to break down the scale into a tri-partite vertical organization. The building facade that addresses an open space, pedestrian corridor, or a street shall be articulated with windows and entry ways that provide interest and stir curiosity. Carefully articulated architectural elements help to define and beautify buildings and in turn enliven the public realm.

Texas State is committed to building a campus of architectural, engineering, and environmental excellence. It will follow nationally recognized sustainability principles and practices. The University will strive to demonstrate good environmental stewardship by achieving Green Building Council objectives. Where possible LEED certification will be achieved, if it does not adversely affect overall design, budget, and occupancy.

Buildings shall be oriented to open spaces, pedestrian corridors, and streets. These guidelines prescribe the major building face that must be built on the build-to-line.

Build-to-lines must have a minimum 60% of their frontage occupied by the building facade. When the build-to-line is fronting a public space, major pedestrian corridor, or street the facade must occupy a minimum of 90% of the build-to-line.

Buildings facades should align with one another to form a continuous edge when facing open spaces, pedestrian corridors, and streets.

All roofs shall have the appearance of terra cotta red tile. The roof shall be fairly uniform in color and no speckled texture is permitted.

Exterior materials of new buildings should have tan brick with contrasting accents. Examples are Old Main and McCoy Hall. Painting the exterior of buildings is discouraged.

Site utility structures such as HVAC equipment, utility meters, satellite dishes, transformers, and other mechanical equipment shall be located in designated service areas so as not to be visible from open spaces on campus, pedestrian corridors, or primary streets.

Service and mechanical units located on the roof of buildings should not be visible from the pedestrian perspective. They should be shielded with a parapet or set back from the building edge.
Simple roof and building forms like the ones shown here are encouraged. The predominant roof plan should be a rectangle or a combination of rectangles. Building massing should be composed of simple rationale forms. Roof forms should be pitched, gabled, or hipped. Flat roofs are generally discouraged except in the case of parking garages (as seen in the example below.)
FACADE ARTICULATION

Ground level floor-to-floor dimension (A) should be greater than upper level floors (B).

Buildings should mediate the slope of a site. The first story of a building may be as high as 20'.

Facades that address an open space, pedestrian corridors, or streets, should not have blank unarticulated wall surfaces.

Brick articulation is encouraged as a way to create visual interest and hierarchy. Door and window lintels, sills, and floor coursing should be articulated.
The facade should clearly express the distinction between the ground level and the upper floors of a building to create a clear base.

To avoid a monolithic appearance, facades shall be vertically articulated with bays no larger than 25 feet in width.

The facade of a building should clearly indicate the location of the main entrance.

Maximum height shall be five stories, except for figural elements or architectural embellishments, such as a tower.
Arcades and colonnades shall provide a minimum width of 10 feet clear for pedestrian passage.

On the ground level, when a facade faces an open space, pedestrian corridor, or street, the minimum percentage of surface that is glazed shall be 60%. No reflective or tinted glass is permitted.

Arcades, balconies, cupolas, bay windows, entry elements, eaves, awnings, figural elements, and other similar uses and structures may encroach beyond the build-to-line.
Openings in walls and windows shall be vertically proportioned.

Lintels above windows should be expressed, especially in exposed masonry construction. Window sills must be expressed on the facade and shall protrude beyond the plane of the facade so as to form a drip edge.

Windows shall be recessed from the exterior plane of the facade and have the appearance of a punched opening in the wall surface.

Horizontally proportioned openings and windows shall be discouraged.

Upper story windows may be smaller and have less detail and embellishment than windows on lower levels.

Openings in walls and windows shall be vertically proportioned.
The visual impact of parking should be minimized. Surface parking lots should be screened from view by vegetation, brick or stone walls, or metal railings. Various methods can be employed to improve the appearance of structured parking garages.

1. The building facade of the parking structures should be designed to screen views of automobiles and sloped parking decks. Place level parking decks against exterior walls with sloped decks in the center of the structure.

2. Safety and security should be primary considerations. Location and visibility of stairs and elevators, graphics, vehicle access control, call boxes, lighting, and any camera surveillance should enhance safety. Structure design should include way finding for pedestrians and cyclists, with measures such as color coding by floor, easily identifiable entrances/exits and elevators, and legible signage.

3. Materials selection and structure design should reflect the all-weather nature of most structures, especially control of water and drainage.

4. Parking structures should be planned to have a minimum of at least two access and egress points. Turn pockets are recommended for left turns from adjacent streets into the structure.

5. Incorporating pedestrian-oriented uses at street level can reduce the visual impact of parking structures. Sometimes a depth of 12 feet along the front of the building is enough to provide space for newsstands, service retail, and other viable uses.

6. Design strategies such as similar materials, a continuous frieze, cornice, canopy, overhang, trellis, or other devices on the facade of the building can visually integrate the parking structure with adjacent buildings.

7. The structured parking garage should incorporate a well-lit pedestrian walkway, stairway or ramp from the sidewalk to the upper level of the building.

8. Parking structures tend to be massive therefore, special consideration should be given to building materials, detailing, landscaping, and topographic changes. Parking structures should be built into the topography whenever possible.

9. The height of the parking garage should be no greater than that of the adjacent buildings or tree canopy. A building lining a parking garage should always be taller than the garage it is shielding.

10. The parking structure should be surrounded at the ground level with occupied space, either by setting back the parking structure to allow a 50 foot liner building in front, or locating parking underground to allow building on top.

ARCHITECTURAL DESIGN GUIDELINES

STRUCTURED PARKING GARAGE

The Matthews Street Parking Garage accommodates a forty foot grade change. The topographic change eliminates the need for an internal ramp, each level has a separate entrance.

The liner building (blue) is taller than the adjacent garage (grey) shielding it from view. Lowering the ground level of the garage helps to minimize its appearance.

Stringing a garage below a plaza reduces the visual impact of the automobile.

Articulating a window pattern with vertical rather than horizontal patterns reduces the perceived mass of a garage.

In the long term vision, the Fine Arts and Communication Garage is flanked by liner buildings. It will not be visible from University Drive or the Concho Green.
The Guidelines for existing historic buildings on the Texas State University-San Marcos campus aim to reinforce those positive elements, patterns, and character-defining features that help create a unique sense of place, and are intended to serve as a framework for sensitive rehabilitation of these properties. These recommendations are compatible with the Secretary of the Interior’s Standards for Rehabilitation and nationally recognized preservation practices.

ACCESSIBILITY IMPROVEMENTS

Universal accessibility to historic campus buildings shall be accomplished in a manner that does not alter or destroy the historic integrity of the building.

Review and implement alternate accessibility requirements as referenced in the Texas Accessibility Standards in the design phase of any accessibility project.

CARE AND MAINTENANCE OF HISTORIC CAMPUSS PROPERTIES

Conduct an annual inspection of the historic campus properties to determine maintenance needs. Examine the integrity of building materials including roof and drainage systems, paint films, masonry and mortar conditions, metalwork, windows and doors. Use this information to implement a maintenance schedule to ensure the long term sustainability of all historic properties on campus.

Clean masonry to halt deterioration or heavy soil-ing. Clean buildings using the gentlest means pos-sible. Do not use sandblasting or high-pressure water blasting to clean masonry under any circumstances.

Repoint deteriorated masonry using new mortar that matches the historic mortar in color, composition, texture and tooling.

Adjust sprinkler heads to avoid spraying building foundations. Move planting beds away from build-ing foundations to the extent possible.

Maintain building gutters and downspouts through an annual inspection and cleaning program.

RECONSTRUCTING MISSING HISTORIC FEATURES AND DESIGN ELEMENTS

Where original building materials are deteriorated beyond repair, replace in kind to match the historic material, dimensions, detailing, and installation methods. Salvage and archive samples of removed building materials for the historical record.

Prior to any substantial rehabilitation of a historic building on campus, review original construction documents for the building on file at Texas State, to determine where missing historic features may be reconstructed, including open loggias, windows, doors, balconettes, gutters and downspouts, and other architectural detailing.

Remove modern infill of exterior porches and log-gias to restore the original appearance of the his-toric building.

NEW ADDITIONS TO Historic PROPERTIES

As the campus evolves, it may be desirable to add on to a historic building. In these cases, the follow-ing recommendations should be taken into consid-eration.

Make additions to the secondary or tertiary facades of historic buildings in a manner that does not overshadow the historic building.

Avoid replication of historic details in new con-struction. The new work should be differentia-ed from the old, and should be compatible with the massing, size, scale, and architectural features of the historic building.

New additions and building alterations should be undertaken in a manner that does not remove or irreversibly obscure character defining features of the historic building.

All additions and alterations to historic proper-ties shall be reviewed by the Texas State Historical Commission by formal notification.

DOCUMENTATION OF REMOVAL

Adaptive and sensitive reuse of historic campus buildings meets the “Honor the Past-Claim the Future” ideals of this Master Plan, and is strongly encouraged whenever possible. Should it be deter-mined, however, that an older or historic building must be removed from the campus, the Univer-sity is required to contact the Texas Historical Commission to determine the appropriate level of recordation of the building prior to demolition. This recordation typically follows the guidelines developed by the Historic American Buildings Survey, and ranges from photographic documen-tation to full plans and elevations of the building. This documentation should be safely stored in the university archives to preserve the historical record of the university.

Note: Information was provided by Volz & As-sociates, Inc.
LANDSCAPE DESIGN GUIDELINES

LANDSCAPE ELEMENTS

OPEN SPACE: Open spaces define the character of the campus. At Texas State landscape is a unifying element that integrates the campus’ eclectic styles of buildings. The mall anchors Old Main at one end to the Alkek Library on the other. Future open spaces will be clearly identifiable each with its own characteristics.

AMPHITHEATER: An oval or round space with tiers of seats rising gradually outward from a central area.

ATHLETIC FIELD: A piece of land prepared for playing a game. New athletic fields are designated for both recreational sports to the west and athletics to the east on campus.

FRONTAGE: An area in front of a building. Adjacent buildings, especially those along the Concho Green and the Quad, will be unified with consistent plantings and furnishings.

GARDEN: A garden is a planned space, usually outdoors, set aside for the display, cultivation, and enjoyment of plant material and nature. Texas State has a number of gardens in place that are educational; these will be incorporated into the new arboretum. The Education Building has an appropriate area on the west side for one of the new education gardens.

INTERSTITIAL AREA: An area without precise use, located between functionally determined built configurations.

LAWN: A lawn is a field of cultivated and mowed grass acting as a gathering point. Sewell Park currently acts as the campus lawn. This will be anchored by the Moon Street Lawn in the future. The Concho Green will be the point of connection for the campus and the City of San Marcos. It will in a sense be their shared public open space.

PLAZA: An open public space often defined by buildings at its edges which are primarily paved. Bobcat Trail will be the first plaza implemented as a part of the Master Plan development.
Regional landscape zones define the campus landscape. The plateau and the prairie create two distinct landscape typologies. The presence of the San Marcos River and the ponds adds a third landscape zone, wetlands, to the Texas State campus.

Plateau

If any loose cover ever cloaked the Edwards Plateau, it has long since been carried away by erosion. As an elevated, comparatively level expanse of land, it is an erosional region with thin soil over limestone.

Prairie

Topography of the Blackland Prairies region is gently rolling to nearly level and well dissected for rapid surface drainage. It is an extensive tract of level or rolling land, covered with coarse grass, and characterized by a deep, fertile soil, a dark-colored alkaline clay interspersed with some gray acid sandy loams.

Wetlands

Wetlands are areas where water covers the soil or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season. Water saturation largely determines how the soil develops and the types of plant communities living in and on the soil. Wetlands may support both aquatic and terrestrial species. The prolonged presence of water creates conditions that favor the growth of specific plants and promotes the development of characteristic wetland soils.

LANDSCAPE DESIGN GUIDELINES

PLANT PALETTE

The plant palette is structured to reflect the three landscape zones on the Texas State campus with a predominance of native plants. Plant material should be selected from the plant list provided in the appendix. Variations from this list must be submitted to the Building Advisory Committee and approved by the President.

LANDSCAPE ZONES

- Plateau
- Prairie
- Wetlands
LANDSCAPE DESIGN GUIDELINES

Lighting

Lighting at Texas State focuses on functionality and style. Functionally, luminaries serve as a source of light and safety for pedestrian and vehicular needs. They also accent and enhance buildings and landscape elements. They may be used to light nighttime events at athletic fields. Stylistically, each type of luminaire acts to transform the overall environment in which it is placed. They provide an architectural accent during the day and highlight the architecture and open space elements at night. There are two primary lights, one for pedestrian walkways and one for vehicular use. Light levels are based on the Texas State University-San Marcos Campus Design and Construction Standards.

PeDESTRIAN Paving

Paths are identified as primary, secondary and tertiary walkways. The primary walkway will form the central spine through the campus. This walkway begins at the circle in front of Blanco Hall and extending east through Bobcat Trail until it reaches the Academic Services Building; it is interrupted by the Student Center plaza. The secondary walkways typically lead to the primary entries of buildings. The tertiary walks are preferred pedestrian routes which connect the other walks together. Plazas are variations on the path design and should respond to the surrounding buildings and allotted space. A hierarchy of materials that define these zones will be implemented over time with intermediary measures used as well.

Site Furnishings

The use of standardized furnishings and amenities throughout the campus will unify the outdoor spaces and help to establish an identity unique to Texas State University-San Marcos. The University currently has a large variety of site furnishings and amenities. Standards established on the following page allow for a systematic replacement of these items. When implementing new building or open space constructions, these standards should be adhered to.

Design Review

To ensure that the guidelines and master plan are being interpreted in the spirit that they are intended, a Design Review Process shall be established that is clearly defined, consistent with prescribed benchmarks, and goals understood by all participants. The goals and guidelines should be embraced by the University community, design decisions confirmed, and framework and criteria explained to architects, planners and landscape architects, who may wish to build on this campus. Decisions affecting the physical and aesthetic qualities of the campus are not the province of any one individual or position. Once a month, the Design Review Committee as identified in the Roster of Councils and Committees, the Assistant Vice President for Finance and Support Services Planning, Associate Vice President for Facilities, Director of Facilities Planning, Design and Construction, Construction Project Manager, and the Director of Grounds Operations, will meet to review all components of the master plan that are to be implemented, from grounds to building projects. Any recommended deviations will immediately be brought to the President’s attention for approval via the Vice President for Finance and Support Services. Monthly meetings permit review of projects at project initiation, conceptual design, schematic design, design development, construction documents, and construction.

Maintenance

The University’s Grounds Operations includes highly professional and motivated staff dedicated to maintaining the campus grounds. An evaluation of all existing landscapes by a team composed of the Grounds Operations staff should occur. This will assure that the landscapes are cared for as designed. When a new landscape is designed by an independent team (following the University Plant Palette and Design Guidelines), a written maintenance manual, reviewed and approved by Facilities staff, should automatically be one of the deliverables. These manuals should be integrated into one campus wide manual that directs all maintenance activities.

104
FINISHES: All exterior products shall have a powder coating of black. Black is timeless. Black also complements the Spanish Colonial style of architecture found on campus.

TABLES AND CHAIRS: Victor Stanley Steelflices Series RND-363 or equivalent in designated study or relaxation areas. Victor Stanley Steelflices Series PRSCT-36R or equivalent for use near dining facilities with outside seating (e.g., The Den).

BENCHES: Victor Stanley Steelflices RB Series – RMFC-24 6 foot bench or equivalent. Benches should be placed over a pad of the same material as the adjacent paving and anchored with concrete footings.

BOLLARDS: Landscapeforms “Annapolis” 6 inch bollard or equivalent without light, removable or embedded.

BIKE RACKS: Derco Hoop Rack or equivalent. Bike racks to be spaced 36 inches on center. Allow minimum 3 foot aisles if arranged vertically.

RECEPTACLES: Victor Stanley Ironsites Series S-45 and S-42 or equivalent. The S-45 is a 45 gallon receptacle appropriate for both litter and recycling. The S-42 is a 36 gallon receptacle which will be used for lower traffic areas and buildings. All receptacles will have the Texas State logo on their top horizontal band. The recycling containers will have a designated recycling lid.

ASH URNS: Victor Stanley Ironsites Series S-20 or equivalent.

PEDESTRIAN LIGHTS: The Texas State pedestrian light is the AAL Providence series PROV-H3 or equivalent with a 12 foot DB6 pole. Installation shall follow Texas State Design Construction Standards. Typical installation spaces poles at 60 feet on center. Lamp ballast is 100 watt metal halide (100MH) for primary walkway areas to achieve .75 -1.5 foot-candles and 175 watt metal halide (175MH) for plazas, entrances, and bus stops to achieve 5 -1 foot-candles.

VEHICULAR LIGHTS: The Texas State vehicular light is the Gardco Gullwing series G18 or equivalent with a 25 foot light round aluminum pole (RA5 with base STB). Installation shall follow Texas State Design Construction Standards. Typical installation spaces poles at 120 feet on center. Lamp ballast is 320 watt metal halide for parking areas to achieve 5 -1 foot-candles.

* Victor Stanley products are in the application process for the federal government program and the company is investigating the TEXMAS program.

** Landscapeforms is a TEXMAS vendor.
The paving standard on the Texas State campus shall be blended terra cotta concrete pavers edged with bands of brushed concrete paving. It shall be the dominant material for primary and secondary walkways and plazas. When a pattern is used on primary and secondary walkways, it may be articulated with bands of concrete or concrete accent pavers. Over time much of the aggregate concrete will be replaced. While the conversion to the new standard is being implemented there may be some areas where aggregate concrete shall be edged with the standard brushed concrete. If possible no aggregate concrete square shall be larger than 5 feet by 3 feet. Bike parking zones are paved with the Eco pavers filled with gray stone chips to increase on-site water infiltration. Custom pavers, shown on page 42, with the Texas State logo will be used primarily along the southern edge. These will be placed at corners and street crossings to alert pedestrians that they have entered the campus.

Primary walkways are major pedestrian routes and should be a minimum of 18 feet wide. Secondary walkways should be 10 feet wide, while tertiary walks should be 6 feet wide. To ensure that paving construction supports necessary loads, paving is defined as pedestrian or vehicular.

Typical pedestrian paving is any path 6 feet or less in width. For this application, concrete pavers are to be 4 inch by 8 inch by 2 3/8 inch thick with a 1 inch sand setting bed, filter fabric and 6 inch aggregate base for pedestrian applications. Eco pavers are 4 ½ inches by 9 inches by 3 1/8 inch thick, have the same setting bed as the previous application, and have gray gravel chips in the exposed crevasses. Concrete paving is 4 inches thick over a 6 inch aggregate base.

Typical vehicular paving includes all paths over 6 feet in width. Concrete pavers are to be 4 inch by 8 inch by 3 1/8 inch thick with a 1 inch sand setting bed, 6 inch concrete base and 8 inch aggregate sub-base.

PAVERS: PaveStone pavers in Antique Terra Cotta, Antique Brown, and Cast Stone or equivalent. Antique Terra Cotta is the primary color, Antique Brown is the dominant accent color, and Cast Stone is a secondary accent color.
The eclectic mixture of paving on campus will be unified by consistently applying the new paving standards as projects arise. The diagram above demonstrates the current mixture.