Discrete Mathematics Seminar

Time: Friday, 13 March 2015, 2:00 – 3:00 PM
Location: 237 Derrick Hall
Title: On p-part of character degree of p-solvable groups
Speaker: Dr. Yong Yang, Mathematics Department

Abstract:

Let G be a finite group and P be a Sylow p-subgroup of G, it is reasonable to expect that the degrees of irreducible characters of G somehow restrict those of P. The Ito-Michler theorem proves that each ordinary irreducible character degree is coprime to p if and only if G has a normal abelian Sylow p-subgroup. Of course, this implies that $|G : F(G)|_p = 1$.

Let $\text{Irr}(G)$ be the set of irreducible complex characters of G, and $e_p(G)$ be the largest integer such that $p^{e_p(G)}$ divides $\chi(1)$ for some $\chi \in \text{Irr}(G)$. Isaacs [1] showed that if G is solvable, then the derived length of a Sylow p-subgroup of G is bounded above by $2e_p(G) + 1$.

Let $b(P)$ denote the largest degree of an irreducible character of P. [2, Conjecture 4] suggested that $\log b(P)$ is bounded as a function of $e_p(G)$. Moretó and Wolf [3] have proven this for G solvable and even something a bit stronger, namely the logarithm to the base of p of the p-part of $|G : F(G)|$ is bounded in terms of $e_p(G)$. In fact, they showed that $|G : F(G)|_p \leq p^{19e_p(G)}$ for any solvable groups [3, Corollary B (i)], and $|G : F(G)|_p \leq p^{2e_p(G)}$ for odd order groups [3, Corollary B (iii)].

In this talk, we show that for p-solvable groups, $|G : F(G)|_p \leq p^{ke_p(G)}$ for some constant k. This implies [2, Conjecture 4] for p-solvable groups.

References