A Focus on Urbanizing Watersheds
by Jason Pinchback, Texas Stream Team

Texas Stream Team is excited to introduce its newest education project funded through the Environmental Protection Agency - the Urban Watersheds Project. The Urban Watersheds Project combines the activities and curriculum of Texas Stream Team, Texas Parks and Wildlife Department’s (TPWD) Texas Amphibian Watch and the Project WILD Aquatic programs to address the issue of water quality and pollution. The project location is in Corpus Christi, within the watershed of Oso Creek, which is listed in the “Texas Water Quality Inventory and 303(d) List” as impaired due to elevated bacteria (TCEQ, 2008).

Inside This Issue...

A Focus on Urbanizing Watersheds 1
Best Management Practices to Maintain Water Quality 3
Volunteer Spotlight: Ruben Saldaña Jr., Arroyo Colorado Watershed 4
Aquarena Center’s Coordination with Texas Stream Team 5
The Benefits of Citizen Monitoring 6
Bacteria Report: The San Marcos River 7
2010 Volunteer Recognition Event 8
Guidelines for Completing Monitoring Forms 9
Test Your Watershed IQ 10

(Canadian on Page 2)
Urbaninizing Watersheds ...

(Continued from page 1)

Oso Bay and Oso Creek have experienced poor water quality conditions for many years. As a result, there are numerous groups partnering to study the issues and determine the best course of action to return the waterbody to compliance. Part of this planning includes providing a variety of outreach programs that help local residents understand how land use activities and individual choices can influence watershed functions.

The main environmental focus of the Urban Watersheds Project is the issue of water quality and pollution. As steps toward improving water quality and protecting aquatic habitats, the project has the following specific objectives: (1) to increase the level of environmental literacy of 6th and 7th grade students; (2) to increase environmental stewardship behaviors at the individual, school, and community levels; (3) to train teachers in monitoring procedures and best use of water quality and related curriculum; (4) to increase student performance in standardized benchmark tests; (5) to increase community awareness of water quality issues in the Oso Creek watershed; and (6) to refine and apply a scientifically valid methodology for documenting changes in environmental literacy and stewardship and proving the project’s effectiveness.

Teachers and staff have completed their first training in preparation for Year 1 of the project and are preparing their curriculum to meet the objectives of this new project. We look forward to reporting their progress in upcoming newsletters.

TPWD’s Marsha May, providing training on Amphibian Watch

Project WILD Aquatic training provided by Auburn Carpenter of the Texas State Aquarium

TPWD's Marsha May, providing training on Amphibian Watch
Best Management Practices to Maintain Water Quality

by Claire Parker, Texas Stream Team Intern

Effective Best Management Practices (BMPs) that can be implemented at construction sites will help maintain the best water quality possible in the area surrounding the site. Two very commonly used BMPs are silt fences and sediment control logs. These two practices are used to trap sediment on site and prevent sediment flow into any waterways near the construction site. Sediment control logs (also called sediment tracking pads) are used to keep sediment off of roadways and subsequently out of storm water drains and streams. Vegetation cover, though difficult to maintain, is another important aspect for a construction site because it will help hold the sediment on site rather than allowing it to wash out. Sediment barriers can be placed in storm water channels in urban areas. These barriers can hold sediment, trash, and pollutant from making their way into waterbodies. Construction sites greater than one acre in size and in large urban areas are regulated and BMPs are required. However, small rural construction sites are not subject to the afore mentioned requirements.

Some BMPs can be used to help manage agricultural land without impairing water bodies within close proximity. For instance, Conservation tillage is the practice of leaving crop residue on the ground to maintain the health of soil, water, and air, as well as retain nutrients within the soil. This form of BMP not only supports crop and soil health and productivity but also does not require as much time and labor and may make subsequent crop sowing easier. Likewise, the implementation of chemical pest management should not be overly applied. Over use of pesticides can negatively effect waterways, especially as a pollutant in water runoff. Irrigation management and water conservation plays an important part in agriculture, especially in Texas. If agricultural fields are over-watered, runoff can be washed into waterways. Filter strips are another type of BMP that can be used on agricultural areas to manage water runoff. These vegetated areas on the downhill side of fields help prevent rapid runoff of irrigation and any sediment that otherwise would wash into rivers.

In Texas, rangeland accounts for 60 percent of the state. Therefore, proper use of rangeland should focus on the prevention of soil erosion and sedimentation. Overgrazing and overuse of rangeland depletes plant cover and litter as well as increases trampling of the soil, contributing to erosion and sediment build-up. Maintaining the proper number of animal units on the land plays a large role because one mature cow consumes around 26 pounds of dry forage per day.

Storm water runoff is one of the largest urban management problems that we face when trying to deal with water quality, because it can be a major contributor to impaired water bodies. There are a number of things we can do to help prevent pollutants from making their way into our water ways. Area Inlet Protection and sediment barriers can be placed on storm water drains to help control contaminates that flow into the drain as the water makes its way into the river. Wetland systems are used to catch storm water runoff before it makes its

(Continued on Page 11)
Volunteer Spotlight —
Ruben Saldaña Jr., Arroyo Colorado Watershed
by Josh Oyer, Texas Stream Team

Ruben Saldana Jr. of Hidalgo County samples 3 sites monthly in the Arroyo Colorado Watershed. Each site is in a different town along the Arroyo. Ruben starts close to home in Weslaco at the FM 88 crossing, continues downstream to a site in Harlingen, and then samples near a boat ramp in Rio Hondo before finishing his day with a well-earned meal at Whataburger. His routine is quite regimented while he tries to follow the same procedure each time even down to his supper time meal. A disciplined individual, Ruben is the ripe age of 14 and will be entering into high school this coming fall.

Ruben was born in Harlingen, moved for a time to El Paso, and now lives back in the Lower Rio Grande Valley in Weslaco. He was trained by Texas Stream Team last November and has accomplished much in 6 months of water quality monitoring. Seeking a good opportunity, Ruben used his volunteer sampling as a subject for his school science project. Being the aspiring scientist that he is, he took his project all the way to the state science fair, earning first place in the district and regional fairs along the way. After doing this, he presented his findings to the Arroyo Colorado Partnership’s last Stakeholder Meeting.

While most teenagers would be quite nervous delivering a presentation to a regional meeting of a diverse group of adults, Ruben is no stranger to public speaking. He has presented to other groups such as the Bob White Brigade about quail management and his fellow 4H Club members about his experiences with Texas Stream Team monitoring. As if this wasn’t already completely above and beyond the extra-curricular activities of an average 8th grader, Ruben is also very involved in the 4H Club raising goats, an avid photographer of nature, and a seasoned hunter and fisherman. To top it all off, he will be occupying Trombone first chair in the top school Jazz band this fall as an incoming freshman. So, when Ruben is engaged in indoor activity, he is often listening to, playing, and writing Jazz music. Of course, a driven individual like Ruben has plans for the future. He would like to attend Texas A&M University and major in Biology with the hopes of eventually going into wildlife management as a career. Between his participation in 4H working with animals and his environmental monitoring, he is certainly building the right foundation for himself. He knows he does not want a job where he is required to sit in the office all day.

Unfortunately, the Arroyo Colorado is an impaired water body. The water quality data that Ruben has collected supports this statement. He describes that he sees the conditions to be the worst in Harlingen with the Secchi disk transparency usually registering at 0.15 meters with a total depth of 1.5 meters. All 3 sites usually have high

(Continued on Page 5)
Ruben Saldaña Jr. ...

(Continued from page 4)

E.coli readings, with it typically being the highest in Weslaco. Ruben believes the high E.coli to be coming from all the dogs being walked along the Arroyo in this area and most evidence of human activity exists on the stream banks. The site in Rio Hondo is another story entirely.

Most recreational activity there is done in the water with much boating, fishing, water skiing, and wakeboarding going on. There are signs at this site for fish consumption advisory. Ruben states that he would like to see pet waste stations and other warning signs installed at his sites warning about the consequences of illegal dumping.

Ruben is an inspirational figure and sets an example as a responsible citizen in his community. He wholeheartedly believes that “a lot of little steps lead somewhere,” and would like to see more people walking in the same step. The Arroyo Colorado is lucky to have such a model environmental steward caring for its health.

Aquarena Center’s Coordination with Texas Stream Team

by Aquarena Center Staff

In recent weeks Aquarena Center and Texas Stream Team have joined forces to help children understand water chemistry and the importance of maintaining ecosystem health. On two separate occasions Aquarena Center has conducted educational tours involving a brief stop at The Landing, where Texas Stream Team staff members help show the groups exactly what water monitoring is and how we help the state of Texas care for its most precious resource - water.

Through a series of hands-on activities the students learn about pH, Turbidity, Conductivity and even Dissolved Oxygen. “The students really get to see not only the importance of understanding our creeks and streams but how, through the scientific method, we identify weaknesses and then work to correct them”, said Ryan Spencer, Texas Stream Team intern and Aquarena staff member. After the Stream Team component is completed, the students enjoy a field trip to Rio Vista, a San Marcos River park, where they try to catch and identify different species of insects, fish and even the occasional crawfish. Many of the students have walked away from the experience saying it was one of the most memorable field trips they have ever been on. Hopefully with the sustained efforts of both groups students will continue to learn more about maintaining healthy water quality in their watershed.

Ruben Sr and Ruben Jr: 1st place at District and Regional Science Fairs with Arroyo testing program
Hello, my name is Ruben Saldaña, I am 14 years old and a proud member of the Texas Stream Team. The reason that this article is in this newsletter is because my presentation of my Science Fair project made it all the way to state. I showed the project to a few of the Stream Team Members, and Jason Pinchback asked if I would like to publish an article for the newsletter on it. My response was “Yes sir, it would be an honor!” So before I talk about all of the science fair stuff, I would like to talk about how all of this started, and how easy it is for the public to get involved.

At the Citrus Center in Weslaco Texas, I was invited through my 4-H club to take a water testing course. I took a full day of training with Josh Oyer. Even though I was the only 13 year-old kid in there at the time, I adjusted well, and felt welcomed and important. I learned about pH, dissolved oxygen, turbidity, *Escherichia coli* (*E. coli*), and many other things. At the end of the training, I received my water testing kit, and was crowned as a Texas Stream Team member. It was the highlight of my life.

As my teacher was badgering me to death on what my science fair project would be, I pulled out the ol’ testing kit and got to work. I created three variables to for my project: which part of the Arroyo is most pure? Would it be the upper Arroyo in Weslaco, the middle Arroyo in Harlingen, or the lower Arroyo in Rio Hondo? I tested my water sources on January 4th, and it turned out that the lower Arroyo was the most pure, but this wasn’t so accurate because I didn’t do my *E. coli*. I decided to test again on April 4th. The results were amazing. I got about all the same results as I did in January; however, I tested for *E. coli* this time. For testing with 5mL of water, these were my results: 2 colonies in Rio Hondo, 4 colonies in Weslaco, and, the worst of all, 16 colonies in Harlingen.

The results for the middle Arroyo in Harlingen were way out of line. I didn’t know why they were like this at the time, but after using skills I learned from Josh Oyer, I soon realized there was a dog walking trail just about 20 yards upstream that was used very regularly. This shows that more than likely the waste from the dogs ends up in the Arroyo after every rain. Maybe calling the city and advising that a plastic bag dispenser could be used to pick up your dogs waste would end up helping to decrease the *E. coli* counts in the mid Arroyo where I tested.

As a closing for this article, I would like to tell all the youth and even the adults that Texas Stream Team is a great organization that everybody should be a part of. Trust me - great things can be accomplished! Thank you, Jason Pinchback, for allowing me to write this article, and I urge all Texans to go the extra mile to be part of Texas Stream Team. You can help your community, and it can take you somewhere.

\[●\]
Bacteria Report –
The San Marcos River
by Neal Denton, Texas Stream Team

Fecal Coliform is a group of bacteria which originates in the digestive tract of warm-blooded organisms that is used to indicate the presence of pathogens in surface water bodies. A pathogen is anything that can cause disease. The water is not directly tested for pathogens because the test would be very time consuming and expensive due to the abundance of pathogens. The most common contributing source of Fecal Coliform to a water body is storm-water runoff. As it runs across the land, it carries all the fecal matter it comes across with it. Sources could be manure from agricultural sources, pet waste, failing septic systems, poorly maintained wastewater treatment plants, or the waste of wildlife around the waterbody.

The City of San Marcos and Texas State University have been monitoring the San Marcos River, Sink Creek (a tributary), and Spring Lake for Fecal Coliform since 2004 to determine the river’s suitability for any activity that may involve contact with the river.

The U.S. Environmental Protection Agency has established two forms of criteria to determine the safety of a water body: one for a geometric mean (geomean) and another for a single sample. The standard for the geometric mean is 200 colony forming units (cfu)/100 mL. The standard for the single sample is 400 cfu/100 mL. The Texas Commission of Environmental Quality deems a water body impaired if 25% of samples from the last seven years exceed the standard. There must be at least ten samples with approximately the same reasonable amount of time between each sample.

93.18% of the 1,959 observations on the river have stayed under the standard. 95.52% of the 227 observations on Sink Creek stayed under the standard, and 98.67% of the 449 observations on Spring Lake stayed under the standard. The geomean for the river is 63.08. The geomean for Sink Creek is 21.12. The geomean for Spring Lake is 6.57. It rained the day exceedances occurred for 85 out of 124 exceedances (69%). Storm-water seems to be the primary contributor of bacteria, but not the only one.

The upstream to downstream graph shows that bacteria concentration increases gradually from upstream to downstream, until the site downstream of the wastewater treatment plant. This indicates that the river might be taking on bacteria from sources within the San Marcos city limits. The bacteria uptake would then be diluted as it moves through the river if Fecal Coliform was only added upstream.
Texas Stream Team —
Texas Stream Team’s 2010 Volunteer Recognition Event

by Leah Gibson, Texas Stream Team Intern

Volunteer water quality monitors and their families gathered from across Texas to participate in Texas Stream Team’s 2010 Volunteer Recognition Event on Friday, June 25th and Saturday, the 26th.

On Friday evening, dinner and dessert (courtesy of the San Marcos River Foundation) was provided during the State of the River Address, a special four-part presentation focusing on the San Marcos River. Dr. Thom Hardy from River Systems Institute discussed the San Marcos River Observing System; Dr. Alan Groeger from Texas State University presented volunteer dissolved oxygen data; Neal Denton, Texas Stream Team staff, presented volunteer bacteria data; and Lee Gudgell from the Guadalupe-Blanco River Authority (GBRA) discussed the Texas Surface Water Quality Standards and the fact that San Marcos River is slightly above what the standard allows for total dissolved solids according to the 2010 Texas Water Quality Inventory.

Monitors re-congregated bright and early Saturday morning to partake in a variety of free activities: glass-bottom kayak tours, a guided nature hike of Spring Lake Preserve, glass-bottom boat rides, and tours of Aquarena Center. By noon, everyone was full of educational fun, but left plenty of room for the catered BBQ lunch that followed.

After lunch, RSI Executive Director Andy Sansom of River Systems Institute, Lauren Bilbe with the Texas Commission of Environmental Quality, and Mire Bira from the U.S. Environmental Protection Agency shared their inspirational messages regarding citizen monitoring. But the real treat followed, when 16 year-old youth monitors Brian Ruiz and Ramon Zarate from the Luling River Pals and 14 year-old Ruben Saladana, Jr. from the Arroyo-Colorado Watershed entertained and inspired the crowd with their own stories about water quality monitoring.

The day wrapped up with an optional field trip to Jacob’s Well Natural Area in Wimberley, where volunteer Master Naturalists Margaret Baker, Deb Bradshaw, and Jeff Vasgaard guided a short hike that ended with a refreshing swim in the cool karstic spring waters.

Texas Stream Team would like to thank everyone who participated in the event and made it successful. It is our way of expressing gratitude for the hard work and dedication of each and every volunteer monitor. The data collected by monitors is the foundation of our organization and we are forever grateful for everyone’s outstanding stewardship!

We Want Your Feedback!
Each year TST hosts a Meeting of the Monitor event to support volunteer involvement with our program. Whether you were able to attend our recent event or not, please take a few minutes to complete our survey at: http://www.surveymonkey.com/s/volunteer-recognition-event
Data Quality Reminder —
A Few Guidelines for Completing Your Monitoring Forms
by Robert Sams, Texas Stream Team

A fter taking so much time and care to monitor, it is a shame if your data is “red flagged” and cannot be used fully because you overlooked some things while filling out your monitoring form. Here are some helpful procedures for your next form:

1. It will really help if you fill out the Group ID and Station ID. If you do not know them either contact your support person or call us toll free to find out! If you are not part of a local group, please enter the “Texas Stream Team” code, “TW”.

2. In case you are still waiting on your Station ID, make sure you give a detailed Site Description, so your data can be entered later when you get the Station ID.

3. Remember to enter your Sample Date and Sample Time. Please don’t make me try to figure out if you are sampling at 6AM or 6PM! That’s why we ask you to submit your sample time in “military time”!

4. The Sample Depth must contain a value, even if it is “0” due to a dry stream.

5. The Meter Calibration Time has to be within 24 hours before your Sample Time. We cannot even begin to stress the importance of this one.

6. Please be sure to let us know which Conductivity Tester you are using. This should be written on the tester. We give out 3 versions: a) a “low” conductivity tester or “Tester 3”; b) a “high” conductivity tester (usually used by those near salt water) or “Tester 4”; and c) the new “dual” conductivity tester, which does both high and low, and can be marked off as “other”.

7. Since temperature affects everything we do, make sure you enter both the Air Temperature and the Water Temperature. Remember to check for the air temperature first, and NOT in direct sunlight.

8. Record BOTH values for your Dissolved Oxygen test and the average value. Remember that the difference between the two test values must NOT be greater than .5 mg/L! If they are, you are to redo the test using the remaining titration. In case you forgot, that’s why the trainers told you not to waste any as you do your test. It’s the “liquid gold” that prevents you from having to start the D.O. test from the beginning!

9. Record the Secchi Disk depth in METERS. Convert it from inches if that is how you are checking the depth. Also record the Total Depth in METERS.

10. The little Reagents/Media box which asks you about the expiration date is very important. An expired reagent can result in unexpected and incorrect values.

11. The Total Time Spent and Roundtrip Distance Traveled are used to report your volunteer time to TCEQ to know how much the public is spending in-kind for our state waters. If you monitor multiple sites, please remember to split up your time across the monitoring forms you submit. We don’t want to over-report your volunteer time!

12. If you are not attached to a group and do not have a Data Manager’s Signature that is okay. However, we do need you to sign the Certified Monitor’s Signature and Date the data sheet to verify that “all procedures have been followed and this information is accurate to the best of your ability”.●
Test Your Urban Watershed IQ...

The quiz that follows is intended to gauge your knowledge of urban watersheds, as well as, some of the impacts of nonpoint source pollution. Answer these multiple-choice questions and test YOUR Watershed IQ:

1. A watershed is generally defined as:
 a. a building that stores water
 b. the total geographic area that drains stormwater to a particular stream, lake, aquifer, or other water body
 c. all the water area within a state that drains to a given point in a landform within that state’s boundaries
 d. a moment in time when you cross into a new area
 e. a new way of organizing environmental agencies

2. On average, how much land is converted to urban land use in the United States each year?
 a. 500,000 acres
 b. over one million acres
 c. no net loss
 d. 9.4 acres
 e. 49,000 Wal-Mart equivalents

3. Which of the following comprises the greatest percentage of impervious cover in suburban areas?
 a. rooftops
 b. lawns
 c. roads, parking lots and driveways
 d. vacant lots

4. Which of the following pollutants are frequently found in most samples of urban stormwater runoff? (select all that apply)
 a. dilithium
 b. laetrile
 c. total phosphorus
 d. vanadium
 e. copper
 f. zinc
 g. fecal coliform bacteria

5. Recent watershed research has discovered that urban stream quality begins to sharply decline once impervious cover in a watershed exceeds:
 a. 45 %
 b. 10 %
 c. 75 %
 d. 125 %
 e. 3.1414 %

6. What fraction of the total water supply on the planet is available for use by humans?
 a. 0.1 %
 b. all of it
 c. 25 %
 d. 48 %

7. How many gallons of water fall on a one acre yard during a one inch rainfall?
 a. 27,200 gallons
 b. none, the rain falls only plains of Spain
 c. 4 imperial gallons + one pint
 d. enough to flood my basement
 e. 45,000 gallons

8. How much more stormwater runoff is produced by a one acre parking lot compared to a one acre meadow?
 a. 6%
 b. 78%
 c. no difference
 d. 100%
 e. 1600%

9. According to the 1996 state Water Quality Inventory reports, what percentage of river pollution is caused by urban stormwater runoff in the nation?
 a. virtually none, industrial pollution is the major problem
 b. virtually none, trees cause pollution
 c. 47 %
 d. 22 %
 e. 14 %

10. A single quart of motor oil dumped down a storm sewer creates an oil slick of what size?
 a. no slick, sinks to bottom
 b. no slick, oil travels from storm sewer to treatment plant
 c. 160 square feet
 d. 2 acres
 e. twice the size of the Exxon Valdez

[Answers on Page 11]
Best Management Practices...

(Continued from page 3)

way to the water body. These are used to hold the pollutants. Many pollutants in storm water runoff come from trash and cars. It is important that we do everything we can to properly dispose of trash and that we take advantage of mass transportation if possible. In larger towns and cities, storm water pollution is regulated according to the Municipal Separate Storm Sewer System (MS4) discharge requirements. The MS4 program is managed by the Texas Commission on Environmental Quality. Small towns with populations of less than 10,000 do not fall under the MS4 requirement.

There are some BMPs that we can all implement at home to help with water quality. If you live on or near water it is important to have a riparian buffer. This is an area of vegetation that is used to help keep nonpoint source pollution out of the river. Riparian buffers also allow for aquatic vegetation and habitat to be more productive and, in turn, improve water quality. Many other things that can be done at home are: the removal of pet waste, not over fertilizing or using organic fertilizers, water efficiently, minimize impervious cover, recycle yard waste, wash your car at residential car washes, and make sure to perform proper car maintenance.

BMPs have shown to filter pollutants, reduce stream bank erosion, reduce flooding, improve habitat, and protect drinking water, and can be implemented for construction sites, agricultural areas, rangelands, storm water runoff, and at home. Of the many BMPs that can be used, personal management will always be an important step in preserving and improving water quality.

The Texas Commission on Environmental Quality (TCEQ) has additional information regarding activities covered under permits at http://www.tceq.state.tx.us/nav/permits/sw_permits.html, along with general resources regarding nonpoint source pollution and how you can prevent it at http://www.tceq.state.tx.us/nav/main/public_main.html.

The Texas State Soil and Water Conservation Board has additional information regarding agricultural BMPs at http://www.tssweb.state.tx.us/files/contentimages/water_conservaition BMP.pdf.
Congratulations to Our New Water Quality Monitors!

Jimmy Aldape
James Arceneaux
Lisa Arceneaux
Marisa Arceneaux
Vanessa Atkins
Lauren Austin
Elisabet Barker
Tim Barker
Shawanna Beaver
Teara Beckert
Shannon Bell
Jude Benavides
Juanita Blackwell
Teresa Bonds
Barbara Brinkman
M. Lee Brown
Linda Brunson
Barry Brubacher
Judy Brubacher
W.D. Bryant
Carole Buchanan
Ray Buchanan
Beth Buckner
Donna Buckner
Tiffanie Buffington
Heather Bunton
Dawn Burbach
Vanessa Burnette
Georganna Cabla
Stephanie Capello
Patricia Castillo
Leslie Castro
Daniel Casavos
Sandra Chalby
Elizabeth Clay
Aaron Claycomb
David Coffman
Jesse Cooke
Doccia Craft
Perla Cristal
Juliana Crouch
Kay Crum
Mario Cruz
Maria Curiel-Trevino
Jennifer da Rosa
Robert Daligish
Tara Davis
Miranda Del Valle
Sarita Del Valle
Marchella Denbow
Cassandra Disbro
Laurie Dixon
Sabrina Donahoo
Lauren Dugat
Noelia Elizondo
Randy Ersch
Ashley Ester
Valerie Evans
Suzan Falkner
Kelly Fisher
Arnalfo Flores
Keyma Frank
Melissa Garess
Catherine Gonzalez
Richard Grayson
Donna Greene
Leander Green
Caroline Gutierrez
Esperanza Gutierrez
Linda Gutierrez
Henry Hahn
Joan Harleaux
Rick Hammer
Lisa Hockenberry
Cathy Hodge
Kerstin Holset
Emily Hoffman
Ferrah Hoover
Pat Hunter
Garland Hutchens
Megan Hypolite
Muhammad Jamal
Cathy Jones
Jennifer Knapp
Karen Knepp
Hillary Kramer
Glenna Landry
Cassy Leftwich
Michelle Leftwich
Shelby Leftwich
Rashmiona Lemon
Jaclyn Lester
Xin Li
Corral Loza
Brittany Mccoy
Moelle Mcfarland
Karen MacKenzie
Stacy Mckown
Mark Mcmamara
Laura Menno
Dana Milani
Vicki Miller
Karly Mills
Cassandra Moore
Tyler Morlock
Brittany Morrison
Manuel Munoz
Lisa Nalls
Amber Navarette
Nestor Navarro
Jessica Neuve
Irene Newhall
Y Nhu Nguyen
Autumn Norris
Kyle O’Haver
Carmen Oliva
Minal Patel
Cydney Piersol
Pari Piersol
Moelle Perez
Bob Perkins
Shannon Pogue
Lynda Ramirez
Nancy Ramirez
Jack Reed
David Reel
Sherry Ree
Kristy Reves
Martha Resendez
Christine Rodgers
Cinthia Rouse
Sebastian Rubiano
Sandra Salazar
Iesha Santiago
Steven Schafersman
Steven Scharath
Heather Schmidt
Deliah Seasrunk
Carrie Sharp
Sherita Smith
Megan Steele
Jessica Stuffle
Ferleshare Starks
Stephanie Sommers
Stephanie Spear
Ryan Taylor
Aziz Tharani
James Tilley
Yuuka Toovenen
Nessa Torres
Valene Torres
David Trevino
Adam Vance
Jessica Ward
Danielle Watanabe
Jennifer Welch
Annemarie Whisko-Benavides
Lakesha Williams
Janet Wilson
Nancy Wilson
Yasmin Wingo
Darrell Winstlett
Lynda Woodard-Hall
John Yochum
Christy Youker
Stacy Zimmerman