Group I1.1 - Material Picking Improvement

Reese Willhite, Francisca C. Robbe, Alex Aguirre, Ricardo Ramirez
Ingram School of Engineering

Problem Statement

The current material picking and movement process contributes to internal waste, complexity, and long customer lead times.

Project Purpose

The project will reduce average picking times for both raw and semi-finished goods (SEMs) within Signify’s internal supply chain, specifically materials flowing into paint and fabrication areas, and SEMs flowing out of those areas to final assembly.

Objectives

Reduce the average pick time of raw and SEM parts by 50% by:
- Provide optimal storage location for raw material destined for fab and/or paint.
- Implement supermarket area for SEMs.
- Implement Kanban system for high running SEMs coming out of fabrication.

Current State

![Future Supermarket Area](image1)

![Current Kanban](image2)

Methodology & Design

Lean Manufacturing is a philosophy of work, that defines the best way to improve and optimize a production system, focusing on the identification and elimination of wastes. *Signify* is applying Lean Manufacturing within its Factory of the Future program, which includes this project.

DMAIC

DMAIC is data-driven quality strategy from Six Sigma used to improve processes, in this case, material picking.

An analysis was conducted of over 700 parts to identify the top 24 “high runners”, with demands over 1,000 units.

Time Studies

Time studies will be used to establish current picking times and to measure improvement achieved on the picking process.

Potential Solutions Under Evaluation

- Implement a Supermarket and Kanban Area used as a single destination for small quantities of SEMs.
- Evaluate potential installation of carousels or stationary racks.
- Reorganize warehouse areas by placing raw materials for high running parts closer to processing equipment.
- Modify SAP to manage and control Kanban on the production floor.

Team Members

Special thanks for their guidance and support to:
- Haiver Montenegro, Signify
- George Mikhailov, Signify
- Dr. Patrick Thomas, Texas State University

Acknowledgments

Ingram School of Engineering

Future Supermarket Area

![Future Supermarket Area](image3)

Schedule

![Schedule](image4)

Value Stream Map

![Value Stream Map](image5)

SEMIs

- Uline Containers 900 lb. capacity
 - 15 x 12 x 7 1/2"
- Racks used at Signify
 - 24 x 15 x 9 1/2"

Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Sum of Delivered Quantity</th>
<th># Raw Labels</th>
<th># Raw Labels</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>443560112220</td>
<td>4302</td>
<td>30</td>
<td>30</td>
<td>121</td>
</tr>
<tr>
<td>44356084130</td>
<td>3904</td>
<td>24</td>
<td>24</td>
<td>101</td>
</tr>
<tr>
<td>443560111660</td>
<td>2933</td>
<td>18</td>
<td>18</td>
<td>67</td>
</tr>
<tr>
<td>443560871390</td>
<td>2400</td>
<td>14</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>443560115220</td>
<td>2280</td>
<td>12</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>443560109760</td>
<td>2106</td>
<td>10</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>443560109730</td>
<td>1818</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>44356053260</td>
<td>1739</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>443560122260</td>
<td>1545</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>443562895300</td>
<td>1407</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>