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Conduits and turbulent flow in the Edwards Aquifer 
 
Stephen R.H. Worthington 
 
1 Introduction 
 
Over the period 2000-2003 the US Geological Survey developed a new numerical model to 
simulate flow in the San Antonio segment of the Edwards Aquifer.  In the early stages of this 
process the question arose as how to best incorporate into the model the high permeability found 
in some areas of the aquifer.  It has generally been recognized that the high permeability in the 
Edwards Aquifer is due to dissolution of the limestone bedrock (Maclay, 1995), and Halihan et 
al. (2000) concluded that “conduits ... control regional-scale permeabilities and have turbulent 
flow” (Halihan et al., 2000, p. 129).  If the location and characteristics of conduits could be either 
predicted on theoretical evidence or determined from aquifer measurements then this would offer 
the possibility of incorporating the conduits into the model and thereby produce a more accurate 
representation of the aquifer.  This would be especially true if the conduits are organized into an 
aquifer-scale network.  On the other hand the possibility was raised that conduits might only be 
local features, and that the aquifer might behave like a porous medium at a large scale.  This 
raised three important questions: 
 
a) What are the characteristics of aquifer-scale conduit networks?   
b) What tests can be applied to determine whether there are aquifer-scale conduit networks in the 
Edwards Aquifer? 
c) where might such conduit networks be located and how could they be incorporated in the 
USGS numerical model? 
 
These three questions are addressed in sections 2, 3, and 4, respectively. 
 
2 Characteristics of aquifer-scale conduit networks 
 
The presence of an integrated aquifer-wide network of solutionally-enlarged conduits with rapid 
flow is the key property of karst aquifers (Huntoon, 1995; Worthington, 1999).  These networks 
form tributary systems that discharge at springs.  This fundamental concept is supported by both 
empirical and theoretical evidence. 
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Tracer testing provides the major evidence for extensive conduits in carbonate aquifers.  The first 
aquifer-scale test took place in 1877, with a trace from sinkholes in the bed of the Danube River.  
The traced water crossed the European continental divide to emerge 12 km away at a spring 
feeding one of the headwaters of the Rhine River, the other major river in Europe.  The travel 
time was just two days, and the calculated Reynolds number is about 500,000.  Flow was clearly 
in the turbulent regime over this 12 km distance. 
 
By the turn of the century dozens of similar tests had been performed (Dole, 1906) and the total 
now exceeds ten thousand.  The average velocity along conduits is 1700 m/day, based on a 
representative set of 2877 tracer tests (Worthington et al., 2000a).  The mean distance traced in 
this data set was 6.3 km, and 124 traces were over distances of at least 20 km.  Calculated 
Reynolds numbers for these very long distance traces almost always exceed 100,000, 
demonstrating the scale to which conduit networks with turbulent flow extend.   
 
Hydrogeological studies within caves provide a useful supplement to this tracing data for 
studying conduit characteristics and flow and dissolution processes.  Mapping of caves is 
approximately doubling the total length of known caves each decade, but the longest distance a 
cave stream has been followed is only 19 km.  Such streams usually descend below the water 
table, where scuba exploration of these conduits is extremely difficult and dangerous, so 
relatively few water-filled conduits have been explored.  Thus cave maps only show a small 
fraction of the actual conduit flow that occurs within an aquifer.  Investigations of different well 
testing and monitoring methods for inferring karstification have shown that the probably of a 
randomly drilled well intersecting a major conduit in a karst aquifer is only about 2% 
(Worthington et al., 2000b).  The remaining 98-99% of wells intersect the rock matrix and 
fractures and possibly small conduits.   
 
The theory of karst conduit formation greatly lagged behind the field evidence, and only in the 
last thirty years has a satisfactory theoretical basis been developed.  The first critical 
development was the investigation of the dissolution kinetics of limestone in a series of 
laboratory experiments, starting in the 1970s (Berner and Morse, 1974; Plummer and Wigley, 
1976).  The second critical development involved the use of numerical modeling to simulate the 
development of conduits by coupling kinetic and equilibrium dissolution with aquifer hydraulics.  
Understanding rapidly advanced in the 1990s, and Dreybrodt (1996) showed that the 
development of conduits was to be expected in all limestone aquifers where there is ready 
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recharge and discharge.  Worthington (2001) showed that conduit development deep below the 
water table is favored where flow paths are longer than 3 km. 
 
3 Tests for aquifer-scale conduit networks 
 
3.1  Local-scale tests for aquifer-scale conduit networks 
Worthington and Ford (1997) and Worthington (1999) summarize a number of well tests that 
may be used to assess karstification in a limestone aquifer.  However, the problem with any well 
testing or monitoring is that there is little evidence whether the enhanced flow commonly found 
at certain horizons in a well is only of local scale or whether it is more extensive.  One major 
indication of karstification in an aquifer is large and rapid changes in water levels and spring 
discharges following rainfall.  The major rainfall event in October 1998 provides a good example 
of the rapidity and the range of the response of the Edwards Aquifer to rain.   
 
The intense rainfall of October 17-19 1998 was centered on Comal County, with more than 20 
inches being recorded at Bulverde and New Braunfels, and 15 inches at San Antonio airport.  
Rainfall diminished to the west, with 10 to 11 inches being recorded in Medina County and 2 to 
4 inches in Uvalde County.  The response in the aquifer recharge zone in Bexar County to this 
rain is shown in Figure 1.  The median lag between rainfall and maximum water level was 60 
days, but there is much variability.  For instance, the water level at the NAWQA Driving Range 
well on Blanco Road had risen 134 feet by October 20th, and thereafter was in recession.  At the 
other extreme the water level in the well at Lockhill Selma rose only 24 feet and did not reach its 
peak until February 1999. 
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Figure 1 Rise in water level in Bexar County recharge zone following the October 1998 storm, base on 
USGS water level measurements.  Changes in water level over time in four wells in the Shavano Park 
area (left), and water level rises in all the wells studied as a function of lag to peak water level (right). 
  
The early response at Comal and San Marcos Springs to the October 1998 rainfall is unknown 
since both gauges also record the flow of intermittent surface creeks (Figure 2).  Following the 
large flows during and after the rainstorm, these creeks stopped flowing on October 26th at San 
Marcos and on October 28th at Comal Springs.  After this time both springs were in recession, 
showing that the maximum lag between rainfall and peak spring flow was nine days or less at 
San Marcos Springs, and 11 days or less at Comal Springs.  However, the effects of watering 
restrictions in San Antonio in August 2000 give an indication of the rapidity of spring response 
(personal communication, Geary Schindel).  During a three-week period in August 2000 the 
water level at J-17 dropped from 643 feet to 640 feet.  However, water levels rose on each 
Saturday and Sunday during this period (Figure 3).  At Comal Springs there was either a 
lessening in the decrease in discharge or an actual increase beginning on each Saturday, showing 
that the lag between a change in water levels in San Antonio and a response at Comal Springs 
occurs in less than one day.  Similarly, the response at Hondo was almost as rapid (Figure 3). 
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Figure 2 Discharges from Comal River and San Marcos River in 1998, showing the interpolated 
estimates of spring flow while surface creeks were flowing off the recharge zone (after USGS data). 
 

 
Figure 3 Water level changes in the Medina County (Hondo) and Bexar County (J-17) index wells and 
discharge changes at Comal Springs in August 2000, showing the effect of watering restrictions on 
weekends (shaded area on chart). 
 
The median lag to peak water level of eight wells in the confined aquifer is 64 days.  Well J-17 
reached a maximum after 37 days, and was the most responsive of the eight confined aquifer 
wells studied by Tomasko et al. (2001).  However, half the rise of 24 feet at J-17 occurred 
between October 17th and October 19th, and a third of the rise of 27 feet at the Hondo well 
occurred between October 18th and October 20th.  Water levels and spring discharges showed a 
general downward trend through most of 1999 (Figure 4).  The recessions at Comal Springs and 
San Marcos Springs approximate exponential recessions, which are shown in Figure 4 by dashed 
lines.  However, there are some deviations from this, such as during November 1998 at San 
Marcos Springs, following heavy rain (e.g. 5.8 inches at Wimberley), and in July 1999 when rain 
affected both springs.  Despite the large volumes of water recharged to the aquifer, the average 
storage time at Comal Springs and San Marcos Springs was only 112 days and 42 days, 
respectively (Table 1). 
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Figure 4 Changes following the October 1998 storm in water levels at the Medina County and Bexar 
County index wells (left) and at the major springs (right) 
 
Table 1 Characteristics of the recession at Comal and San Marcos Springs 
 

Characteristic Comal Springs San Marcos Springs 

Maximum discharge (cfs) 442 403 

Exponential recession, Q(t)=  442 exp(-0.0012t) 403 exp(-0.004t) 

Pre-storm discharge (cfs) 270 215 

Time to return to pre-storm discharge (days) 411 157 

Median storage time (days) 112 42 

 
The above data from a single storm demonstrate two distinct responses in the aquifer.  A few 
wells in the recharge zone together with Comal and San Marcos Springs show a rapid and large 
response, with peak levels being reached within a few days of the storm.  The peak responses in 
the springs are driven by high heads in the conduits that feed the springs, with the pressure pulse 
from the increased water levels in the recharge zone being transmitted quickly to the springs.  
Conversely, most wells show a much slower and smaller response, with peak water levels being 
attained after about two months.  These wells are not located on conduits and their response is 
attenuated by the much lower permeability in the matrix and smaller fractures in the aquifer. 
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3.2 Aquifer-scale tests for aquifer-scale channel networks 
Tracer tests are the standard method to demonstrate large-scale channel networks in limestone 
aquifers where sinking streams and springs are both found, but these are difficult to apply in the 
Edwards Aquifer due to the large well abstractions in San Antonio and the exceptional scale of 
the aquifer.  An alternative method involves identifying aquifer characteristics that differ 
between a karst aquifer and an ideal porous medium and to compare the Edwards to these two 
end-members. 
 
Mammoth Cave is the most extensive known cave in the world, and has been the subject of many 
karst studies, including two books on the geology and hydrogeology of the area (Palmer, 1981; 
White and White, 1989).  The best-characterized portion of the aquifer is the groundwater basin 
draining to Turnhole Springs (Quinlan et al., 1986; Hess and White, 1988; Worthington et al., 
2000a; Worthington, 2003).  This groundwater basin is used as the type example of an ideal 
well-karstified carbonate aquifer.   Figure 5 shows the difference in water-table configuration 
between this type example of a karst aquifer and an ideal (i.e. homogeneous and isotropic) 
porous medium aquifer such as in sand.  Table 2 lists six major differences between these two 
aquifer types.  These six criteria are applied below to the Edwards Aquifer. 
 

 
 
Figure 5 Block diagrams to show the major differences between an ideal carbonate aquifer (left) and an 
ideal sand aquifer (right) 
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Table 2   Major aquifer-scale differences between the Turnhole Spring karst aquifer and 
an ideal sand aquifer  

# Criterion Karst aquifer Sand aquifer Test method 

1 discharge to surface convergent flow to 
springs 

parallel flow lines to 
seepage face 

check for presence 
of springs or 
seepage faces 

2 shape of 
potentiometric 
surface (normal to 
major flow lines) 

equipotentials form 
troughs 

equipotentials are 
parallel 

plot potentiometric 
surface from heads 
in wells 

3 downgradient trend 
in hydraulic gradient 

decreases increases plot potentiometric 
surface from heads 
in wells 

4 downgradient trend 
in hydraulic 
conductivity 

increases no change calculate change in 
hydraulic 
conductivity 

5 scaling effects substantial none compare hydraulic 
conductivity from 
different scales 

6 flow regime laminar in matrix 
and fractures, 
turbulent in conduits 

laminar a) tracer tests to 
springs 
b) regress spring 
discharge against 
head in wells 

 
 
Nature of discharge to the surface from the Edwards Aquifer  
The discharge from the Edwards Aquifer to the surface occurs at six groups of springs, with 
Comal Springs, San Marcos Springs and Hueco Springs accounting for more than 90% of the 
total spring discharge, which in 1997-2002 averaged 640 cfs.  These springs all have multiple 
orifices and all occur on or close to major faults.  Multiple orifices are common for springs in 
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karst aquifers (Quinlan and Ewers, 1989).  All the spring orifices at San Marcos Springs and the 
majority of the spring orifices at Comal Springs emerge from the bottom of artificial lakes.  
There is usually no surface flow into these lakes, but following major rainstorms ephemeral 
creeks (Sink Creek at San Marcos Springs and Blieders Creek at Comal Springs) feed these lakes 
and deposit fluvial sediments onto the lake bottoms.  These deposits may have resulted in an 
increased number of spring orifices in the lake bottoms. 
 
Shape of the potentiometric surface (normal to major flow lines to the springs) 
There are steep hydraulic gradients from the unconfined aquifer to the confined aquifer.  Within 
the confined aquifer pronounced troughs in the potentiometric surface are found in a number of 
places, suggesting that there are major high-permeability conduits.  The best two examples are 
shown in Figure 6.   

 
Figure 6 Coincidence of structural and potentiometric surface troughs near Uvalde (left) and near D'Hanis 
(right), based on structural data from Collins and Hovorka (1997) and on water-level data from Welder 
and Reeves (1964) and Klemt et al. (1979) 
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Downgradient trend in hydraulic gradients 
Hydraulic gradients along the major flow lines to the two major springs are shown in Figure 7.  
In both cases the profiles are concave as is typical of karst aquifers.  The steep hydraulic 
gradients 75 km along the flow path to Comal Springs are probably due to extensive intrusives in 
Uvalde County. 
 

 
Figure 7 Elevations in the potentiometric surface along major flow paths to San Marcos Springs (left) and 
to Comal Springs (right) based on water levels in Klemt et al. (1979), Ogden et al. (1986) and Maclay 
(1995). 
 
Downgradient trends in hydraulic conductivity  
Figure 8 shows the trend in hydraulic conductivity (K) along the major flow path to Comal 
Springs in the GWSIM model (Klemt et al., 1979; Thorkildsen and McElhaney, 1992).  There is 
a marked increase in a downgradient direction, suggesting that conduits increase in size and/or 
number as the springs are approached. 

 
Figure 8 Trend in hydraulic conductivity in the GWSIM model along the flow path from the Brackettville 
divide to Comal Springs 
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Scaling effects in hydraulic conductivity 
In a porous medium the geometric mean K derived from pumping tests can be used for aquifer 
simulations.  This is not the case in the Edwards Aquifer, where there is a pronounced scaling 
effect and much higher values are needed to simulate spring flow (Halihan et al., 1999, 2000).  
Figure 9 shows the ratio between the K values used in GWSIM (Klemt et al., 1979) and the K 
values derived from kriging of well pumping test data (Hovorka et al., 1998).  K values in the 
models are more than 100 times higher than pumping test values over much of the confined 
aquifer.  This shows that the pumping test values are not representative of aquifer permeability, 
and suggests that there is a high-permeability conduit network that few wells intercept.  A rare 
well that does appear to intercept a major conduit is the Living Waters Well in southern Bexar 
County, where 37,000 gpm flowed from an 85 ft open interval in a 28-inch well.  Swanson 
(1991) suggested that this is the world’s most productive water well. 
 

 
 
Figure 9 Ratio of the transmissivity values used in the GWSIM model (Klemt et al., 1979) to those derived 
from kriging of well pumping tests (Hovorka et al., 1998) 
 
Figure 10 shows a comparison between two aquifer simulations (Klemt et al., 1979; Maclay and 
Land, 1988) and a recent geostatistical analysis of the pumping test data (Painter, personal 
communication, 2001).  The two model simulations have very similar K distributions, and the 
geostatistical analysis is similar at low K values.  However, there is a large discrepancy at high K 
values, again indicating that the pumping tests data fails to represent the high-K conduits. 
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Figure 10 Hydraulic conductivity for the Edwards aquifer used in the GWSIM model (Klemt et al., 1979), 
the USGS model (Maclay and Land, 1988), and derived from a geostatistical analysis of pumping test 
data (Scott Painter, personal communication, 2001) 
 
Comparison between the Edwards Aquifer and other karst aquifers shows that the scaling effect 
is similar (Figure 11).  The implication is that the Edwards is similarly karstified to other karst 
aquifers and thus has a well-developed conduit network. 
 

 
Figure 11 Scaling in hydraulic conductivity in the Edwards Aquifer and in other karst aquifers (after 
Worthington et al., 2002). 
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Flow regime 
Atkinson and Smart (1981) suggested that the presence of turbulent flow in conduits is the 
definitive characteristic of karst aquifers.  However, the probability of a randomly drilled well 
intersecting a conduit is only about 0.02 (Worthington et al., 2000b), and so single-well tests are 
rarely able to identify if conduits with turbulent flow are present in an aquifer.  However, tests 
involving multiple wells or wells and springs offer better methods for testing for turbulent flow.  
Tracer tests and head differences between wells and springs are two such methods. 
 
The presence of major springs makes the Edwards an ideal aquifer to carry out tracer tests since 
flow paths converge on these springs and thus natural gradient tests can be used with a small 
number of sampling points.  Comprehensive testing has taken place in the Barton Springs 
segment of the aquifer, where 17 successful traces have been carried over distances up to 29 km 
(Hauwert et al, 2002a, 2002b).  Other tests in the Edwards Aquifer over distances up to several 
kilometers have been carried out by Ogden et al. (1986), Rothermel and Ogden (1987), Maclay 
et al. (1981), Schindel (2002), and Schindel et al. (2002).  Table 3 shows the longest successful 
traces to each of the four major springs. 
 
Table 3 Tracer test results for four major springs in the Edwards aquifer 
 

 Comal Springs San Marcos 
Springs 

Hueco Springs Barton Springs 

Injection point LCRA well Ezell’s Cave Blieders Creek Crooked Oak 
Cave 

Distance 0.8 km  3.3 km 4 km 29 km 

Spring discharge 180* 50* 80 29 

Tracer velocity 240 m/day 180 m/day 800 m/day 1200 m/day 

Reynolds 
number  

140,000 64,000 170,000 130,000 

Reference Schindel et al. 
(2002) 

 

Ogden et al. 
(1986), Schindel 
(2002) 

Rothermel and 
Ogden (1987) 

Hauwert et al. 
(2002a) 
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* The tracer did not emerge from all spring orifices.  Discharges used are estimates of the 
total discharge from the orifices from which the tracer emerged. 
 
 
A second method of identifying turbulent flow is to compare the relationship between spring 
discharge and the head in wells.  Head changes are proportional to specific discharge if flow is 
laminar, but change with the square of discharge if flow is turbulent (Street et al., 1996, p. 232).  
This can be expressed as 
 
< = -K  im   (1) 
 
where < is the specific discharge, K is hydraulic conductivity, i is the hydraulic gradient, and m 
is an exponent which depends on the flow regime (Freeze and Cherry, 1989, p. 72).  The 
exponent m ranges from 0.5 for turbulent flow to 1 for laminar flow.   
 
If a well intercepts a conduit, if the conduit is flooded for its entire length to a spring, and if there 
is turbulent flow in the conduit, then exponent m in Equation 1 will have a value of 0.5.  It is 
very unlikely for a well to intercept a major conduit, but wells frequently intercept open, 
transmissive fractures, in which the flow regime is laminar.  Such fractures may be well 
connected to major conduits, resulting in exponent m being between 0.5 and 1, reflecting in part 
the laminar flow in the fracture and in part the turbulent flow in the conduit.   
 
Figure 12 shows head and spring discharge correlations between Barton Springs and a well 
located 4 km to the south which is close to a trough in the potentiometric surface.   The major 
conduit feeding Barton Springs is inferred to be associated with this trough, and turbulent flow in 
the conduit has been established by tracer testing such as the trace from Crooked Oak Cave to 
Barton Springs (Table 3).  There is a high correlation between head in Well YD-58-50-216 and 
spring discharge, which indicates a good hydraulic connection.  The exponent of head in the 
regression equation is very close to the 0.5 value in Equation 1, indicating that there is turbulent 
flow along the flow path between the well and the spring.  Recent tracer testing between a 
number of sinking streams and Barton Springs have demonstrated groundwater velocities of 1 - 6 
km/day, confirming that turbulent flow in conduits occurs along a number of pathways in the 
aquifer (Hauwert et al., 2002a, 2002b) 
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Figure 12 Correlation between head in well YD-58-50-216 and discharge at Barton Springs, 
demonstrating turbulent flow in the aquifer (data from Texas Water Development Board files). 
 
Well J-17 (AY-68-37-203) in San Antonio is the most significant well in the San Antonio 
segment of the Edwards Aquifer since it is used as the index well for Bexar County, where  more 
than 1.5 million people are supplied by water from the aquifer.  Furthermore, regulations place 
restrictions on water use when the level in J-17 is less than 8.2 m above the level of Comal 
Springs.  There is an excellent though non-linear correlation between the head in J-17 and Comal 
Springs discharge (Figure 13).  The exponent of 0.66 in the regression equation indicates that 
flow is turbulent along a majority of the 40 km flow path between J-17 and Comal Springs.  
 

  
Figure 13 Correlation between the head in the Bexar County index well and the discharge from Comal 
Springs, based on daily readings between 1932 and 2002, showing a non-linear relationship indicative of 
turbulent flow in conduits (data from USGS and EAA data bases). 



 

 
17 

The velocities found from tracer tests in the San Antonio and Barton Springs segments of the 
Edwards Aquifer (Table 3) together with a larger global set of tracer test results (Worthington et 
al., 2000a) can be used with Comal Springs discharge data to estimate conduit size and flow 
regime by using the continuity equation 
 
   Q = v A        (2) 
 
where Q is spring discharge, v is conduit velocity and A is conduit cross-section.  Results are 
shown in Figure 14.  It is unknown whether there is a single major conduit or a number of 
conduits in the main flow path to Comal Springs, but the figure indicates that flow is likely to be 
well within the turbulent flow regime.  
 

 
Figure 14 Conduit diameter, conduit velocity, and Reynolds Number for the conduit or conduits feeding 
Comal Springs.  The most likely range of values is indicated by the shaded box. 
 
 
Conclusions on the six tests 
Each of the six tests provides evidence that flow in the Edwards Aquifer is more like an ideal 
karst aquifer than an ideal porous medium aquifer.  This strongly supports the concept that there 
is an integrated network of conduits connecting the major sinking streams with the springs.  
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4 Locations of conduits based on aquifer structure 
The Edwards Aquifer is notable not only for its large extent and high permeability but also for its 
extension to depths exceeding 1000 m  below the water table.  Karst theory can help in 
interpreting why this has occurred, and this interpretation will aid in identifying the location of 
conduits in the aquifer. 
 
4.1 Theoretical optimum location of conduits 
A first step in determining the locations of conduits in the Edwards Aquifer is to identify the 
optimum location for conduits.  It has commonly been considered that shallow flow paths, close 
to the water table, are the most favored locations for conduits because the distance is shorter than 
for deeper flow paths and because fracture apertures are likely to be larger close to the land 
surface due to stress release (Thrailkill, 1968).  However, Worthington (2001) showed that 
geothermal heating results in lower viscosity and greater flow at depth, and this can result in 
conduit formation deep below the water table in cases where sink to spring flow paths exceeds 3 
km in length.  Flow paths in the Edwards Aquifer greatly exceed 3 km, which indicates that 
conduit development deep below the water table is favored. 
 
The three representative flow paths shown in Figure 15 were investigated to determine the most 
favorable location for conduit development in the aquifer.  The input point for the flow paths is 
taken to be water sinking in the bed of Frio River and the output point is Comal Springs.  Flow 
path A is the most direct pathway, is close to the water table, and assumes a linear decrease in 
head from 240 m at Frio River to 190 m at Comal Springs.  The flow path is almost a straight 
line between the two end points and is 154 km long.  Maclay (1995) suggests that large-
displacement faults in northern Medina County are a barrier to flow.  Flow path B follows a 
pathway that is parallel to most faults and thus minimizes the crossing of faults.   Flow path C 
takes a southerly path deep in the confined zone of the aquifer and close to the Bad Water Line 
(the 1000 mg/L southerly limit of fresh water).  Flow along the fractures in flow paths B and C is 
investigated at the middle of the Edwards Aquifer, which varies in thickness between 145m and 
275 m along the flow paths analyzed.   
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Figure 15 Three possible flow paths from sinks at Frio River to Comal Springs, showing a short path in 
the unconfined aquifer (A) and longer paths in the confined aquifer (B and C).  The latter paths are 
favored for conduit development (see text for details). 
 
The ambient groundwater temperature at 5 km increments along the three flow paths is shown in 
Figure 16a, assuming a surface temperature of 20.5 0C and a geothermal gradient of 0.0273 0C 
/m (Schultz, 1993).  In northern Frio County the flow path descends to a depth of 1050 m below 
sea level, where the calculated ambient temperature is 55 0C.  Discharge along the two flow 
paths is examined for a fracture width (w) of 1m and an aperture (b) of 0.1 mm.  Flow along such 
a fracture is described by the Hagen-Poiseuille equation (which is also known as the cubic law) 
 
Q = ∆ g b3 i w / 12 : (3) 
 
where Q is discharge,  ∆ is the density of water, g is gravitational acceleration, b is fracture 
aperture, i is hydraulic gradient and : is dynamic viscosity.  Equation 3 can be simplified to 
 
Q = g b3 i w / 12 < (4) 
 
where < is kinematic viscosity ( :/∆).  Figure 16b shows the variation in kinematic viscosity 
along the three fracture pathways.  Since g, b and w in equation 3 are constants in this analysis, 
this means that 
 
Q % i / < (5) 
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Figure 16 Temperature (left) and kinematic viscosity variations (right) along the three flow paths shown in 
Figure 15. 
 
By assuming constant discharge along the length of each of these fracture pathways the hydraulic 
gradient can be calculated since it is inversely proportional to kinematic viscosity and the total 
head loss along the two pathways is 50 m.  The final step is to calculate discharge along each of 
the two fracture pathways using Equation 4.  Results are shown in Table 4.  
 
Table 4 Characteristics of the three flow paths shown in Figures 15 and 16 

Path Length 
(km) 

Relative length 
(%) 

Discharge 
(L/s) 

Relative 
discharge 
(%) 

A 154 100 2.64E-10 100 

B 162 105 2.94E-10 112 

C 191 124 2.94E-10 112 

 
 
The significance of the 12% greater flow along pathways B and C despite of the longer flow 
paths is that more dissolution takes place where there is greater flow.  The development of 
conduits takes place by a positive feedback process, with the pathway having the greatest initial 
flow eventually developing into a conduit.  The above comparison shows that deeper parts of the 
aquifer are favored over shallower parts for conduit development, even when the deep flow path 
is up to 24% longer than the shallow flow path. 
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4.2 Location of conduits based on structural, water level and water chemistry data 
In the previous section it was shown that deep locations in the aquifer are favored over shallow 
locations for the development of conduits.  Particularly favorable locations are in grabens and 
synclines since these offer the advantage of deeper flow paths without the disadvantage of the 
flow paths being longer.  There are a number of large-scale structural troughs in the Edwards 
Aquifer, where there should be increased flow and where conduit development is favored (Figure 
17).  Three cross-sections of the aquifer (Figure 18) give further details of the structural troughs 
labeled X, Y, and Z in Figure 17. 
 

 
Figure 17 Indications of conduits in the Edwards Aquifer, based on structural troughs, potentiometric 
surface troughs, and a low conductivity plume of fresh water in Bexar County. 
 
Nine major structural troughs are labeled A through J in Figure 17, and most of these have 
indications of conduits being associated with them.  Feature A is a structural trough to the north 
of Big Mountain, where conduit development is favored just to the south of a fault (Figure 18, 
cross-section X).  Water-level data show that a trough in the potentiometric surface is aligned 
with this structural trough (Figure 6).  To the east there are three favored structural pathways and 
water-level data indicate that conduit development has taken place along pathway A in Figure 
6a. 
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Figure 18 Aquifer cross-sections, showing the coincidence of structural troughs and potentiometric 
surface troughs.  The locations of the cross-sections are shown in Figure 17 (structural data from Collins 
and Hovorka, 1997 and Guyton and Associates, 1979)  
 
Feature B in Figure 17 is an enigmatic water-level trough.  Flow in this trough is towards the 
south and water-level data in some wells at times of low flow are lower than measured levels to 
the east in Medina County.  This area of the aquifer is complicated by the presence of igneous 
intrusives and by the scarcity of water-level data in southern Medina County, where the aquifer 
is deep below the surface and there are consequently few wells.  There is increased 
sedimentation in the southern part of this pathway in a synclinal trough that plunges to the south, 
and conduit development in this trough may have facilitated the extension of the aquifer to the 
south. 
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Feature C in Figure 17 is a significant structural trough that coincides closely with a major 
potentiometric-surface trough (Figure 6b).  The highly productive Living Waters Well is just 
north of a fault downthrown to the north (feature D).  There is a deep graben (feature E) to the 
west of San Pedro and San Antonio Springs, which continued to the northeast to join feature F.  
The water-level data is insufficiently detailed in this area to indicate whether there is increased 
flow here, but the electrical conductivity data suggests that the main flow line is to the south of 
this graben.  Feature F is an 80 km long feature that extends from near San Antonio Airport to 
San Marcos.  Over much of its length it is a deep graben with an anticline to the south, and for 
the 50 km from Cibolo Creek to San Marcos the Bad Water Line is just south of the most 
favorable position for a conduit (Figure 18, cross-section Z).  Comal Springs are on the northerly 
bounding fault of the graben and San Marcos Springs are about 100 m north of the graben 
(Hovorka et al., 1998).  Feature G is a graben in Comal County with post-Edwards strata at the 
surface.  Water-level data show this graben to be the northwesterly limit of the low-gradient 
potentiometric surface area, indicating high permeability along this graben.  Furthermore, Hueco 
Springs is located on this graben.  Feature H like feature G is a graben within the recharge zone 
where post-Edwards strata appear at the surface.  George (1952) shows a potentiometric surface 
trough aligned with this graben.  Finally, feature J is an extensive structural low but the structural 
trough rise steeply to the east so that is no favorable pathway for conduits to develop along, and 
the major flow in the confined aquifer is 10-30 km south of J.        
 
The close alignment between potentiometric surface troughs and at least parts of six of the nine 
structural troughs and the position of the highest-production well in the Edwards Aquifer in the 
seventh trough strongly support the hypothesis that favorable structural location is an important 
factor in conduit development in the aquifer. 
 
In Bexar County it is not possible to identify potentiometric-surface troughs because of the large 
abstraction rates for use by the city of San Antonio together with the low hydraulic gradients in 
the confined aquifer.  However, the high density of wells in this area with water-quality data 
permits the identification of a low electrical conductivity (EC) plume of fresh water in the 
southern part of the confined aquifer.  This is shown on an aquifer-scale map by Hovorka et al. 
(1996, Figure 6), and is shown in more detail in Figure 19.  Some EC values in southwest San 
Antonio are less than 440 :S/cm, suggesting rapid flow from the recharge zone of this dilute 
water.  To the east there appears to be a steady increase of the dilute water plume to 480 :S/cm in 
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northeast San Antonio and to 520 :S/cm at Comal Springs.  The plume lies just to the south of 
the Bexar County index well (J-17) and San Pedro and San Antonio Springs.  

 
Figure 19 Plume of low electrical conductivity (EC) in southern Bexar County, with EC values in µS/cm 
(based on data from Texas Water Development Board files). 
 
4.3 Development of the aquifer over time                
The conditions that favor enhanced dissolution in structural troughs can help explain not only 
current conduit locations but also the development of the aquifer over time.  Pertinent questions 
include: 
 
(1) Why does the confined aquifer vary in width from less than 1 km at Comal Springs (section Z 
in Figures 17 and 18) to more than 50 km in Medina County (section Y in Figures 17 and 18), 
and how have discharge points from the aquifer varied over time? 
  
(2) Can aquifer development in the past be understood in terms of current processes, and if so 
what is the current rate of aquifer development? 
 
(3) Where is most aquifer dissolution taking place, and is the Bad Water Line stable or is it 
moving to the south? 
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Variation in the width of the confined aquifer   
The uplift and faulting along the Balcones Fault Zone in early Miocene times can be considered 
as the beginning of the modern phase of aquifer development (Sharp and Banner, 1997).  At the 
present time, recharge occurs where the aquifer is unconfined and natural discharge occurs from 
springs. All the major springs in the aquifer discharge from faults that have substantial 
displacements, with the flow rising up the faults through up to 200 m of strata that overlie the 
Edwards Aquifer.  It is likely that similar patterns of recharge and discharge have taken place 
since the Balcones Fault Zone was established in the Miocene. 
 
The large variation in width of the confined zone is a marked characteristic of the aquifer.  The 
reasons for this can best be illustrated by examining cross-sections where the confined zone is at 
its narrowest and at its widest.  These are shown in cross-sections Z-Z' and Y-Y', respectively, in 
Figures 17 and 18.   
 
Cross-section Z-Z' is at Comal Springs, where the fresh-water zone is limited to a narrow graben.  
The top of the Edwards aquifer is just below sea level, but to the south there is an anticline where 
the strata rise more than 100 m.  The deep graben provides a much more favorable location for 
aquifer dissolution and thus enhanced flow than the anticline to the south (Worthington, 2001 
and section 4 above).  This has effectively provided a barrier to the southward migration of the 
Bad Water Line, which is less than 500 m from Comal Springs.  The graben and associated 
anticlinal barrier to southward migration of the Bad Water Line is present throughout Comal 
County and extends west in Bexar County and east into Hays County.  This is a major reason 
why the confined zone in the eastern part of the aquifer is so narrow. 
 
The central part of the Edwards aquifer is much wider, reaching a maximum width of 54 km in 
western Medina County.  The cross-section at that point shows southward-dipping strata except 
for just south of Highway 90, where there is a structural trough to the north of an anticline 
(Figure 18, section Y-Y').  There is a potentiometric surface trough that is coincident with the 
structural trough, and this demonstrates that there is increased flow along the trough (Figure 6).  
The structural trough extends for about 25 km.  In this area the trough provides a focus for 
enhanced dissolution and flow and the anticline immediately to the south provided a structural 
barrier to southward migration of the Bad Water Line.  However, to the west this anticline dies 
out and so there was no impediment to continuous migration of the Bad Water Line to the south 
(flow path B in Figure 17).  However, the presence of this marked trough in the potentiometric 
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surface (Figure 6 and C in Figure 17) does suggest that it may have been the major vector for 
eastward flow in this part of the aquifer for some considerable period.  At such a time it is quite 
possible that the Bad Water Line was just to the south of the trough in an analogous situation to 
that at Comal Springs today.  
 
It was noted above in Section 4.2 that enhanced flow usually but not always occurs along 
structural troughs.  From the discussion above considering the preferential flow at the cross-
sections X, Y, and Z, it does appear that the major differences in the width of the confined zone 
of the aquifer is explained by the locations of structural troughs and the enhanced dissolution that 
occurs in them (Worthington, 2001).            
 
The confined zone in the western part of the aquifer is much narrower than in the central part.  In 
central Uvalde County there is a structural dome in the Edwards strata, with several inliers of 
Edwards Group strata, such as at Big Mountain, which is just east of the city of Uvalde (cross-
section Z-Z' in Figures 17 and 18).  To the north of Big Mountain there is a structural trough, and 
this forms a favorable location of enhanced dissolution and flow.  This is confirmed by the 
presence of a trough in the potentiometric surface that closely follows the structural trough 
(Figure 6).     
 
Dissolution rates and rate of aquifer evolution 
There are a number of dissolution processes taking place in the aquifer, and these all serve to 
enhance aquifer porosity and permeability.  An estimate of current aquifer dissolution rates is 
given in Table 5.  This is based on the difference between dissolved solids in aquifer recharge 
and aquifer discharge.  Aquifer recharge is calculated from mean concentrations of the six major 
ions from three rivers that recharge the aquifer.  Aquifer discharge is taken as the average of San 
Antonio Water System, Comal Springs, and San Marcos Springs averages.  These averages are 
not weighted by discharge, and clearly could be refined using more locations, more 
measurements at each location, and by weighting the data by discharge.  However, for all six 
ions both the recharge and discharge data are clustered and distinctly different, and so give a 
reasonable approximation. 
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Table 5 Average major ion concentrations in aquifer recharge and discharge 
 

 n Ca++ Mg++ Na+ HCO3
- SO4

-- Cl- 
Frio River (1) 30 54.1 11.4 6.0 202 13.3 10.2 
Nueces River (1) 30 61.8 9.9 5.3 207 11.0 10.3 
Blanco River (1) 30 67.1 12.2 6.0 243 15.0 10.3 
Recharge average  60.6 11.2 5.8 218 13.1 10.3 
SAWS (2) 80.0 14.0 10.7 267 25.8 20.5 
Comal Spring (3) 32 78.4 16.1 9.4 285 24.1 16.6 
San Marcos Spring (3) 19 83.7 17.8 10.2 312 23.9 20.1 
Discharge average  80.7 16.0 10.1 288 24.6 19.1 
Aquifer dissolution  20.1 4.8 4.3 69.6 11.5 8.8 
Notes: (1) USGS (2003); (2) Averages from 1997-2002 data; (3) from EAA Hydrogeologic 
reports for 2001 and 2002 and from TWDB online database 
 
 
Aquifer dissolution is calculated from the difference between the recharge and discharge 
concentrations (Table 5).  This is then converted into an equivalent concentration of minerals 
removed, assuming that the six ions are derived from dolomite, anhydrite, calcite and halite.  The 
overall ion balance error in this calculation was 0.7%.  The mean discharge from the aquifer over 
the period of record (1934-2002) is 8.34 x 108 m3/year or 676,500 acre-feet per year (EAA, 
2003).  The flux of minerals removed is calculated from the product of aquifer dissolution and 
aquifer discharge, and converted to a volume of 25,700 m3 of rock that is removed each year as 
dissolved load (Table 6). 
 
Table 6 Flux of minerals removed from the aquifer as solutes 

 Dolomite Anhydrite Calcite Halite Total 
Aquifer dissolution (mg/L) 36.6 16.3 18.4 13.1 84.4 
Flux of minerals removed (t/year) 30500 13600 15300 10900 70300 
Specific gravity 2.85 2.93 2.71 2.30 2.73 
Flux of minerals removed (m3/year) 10700 4640 5650 4730 25700 
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Total aquifer porosity has been estimated to be 2.13 x 1011 m3 (Hovorka et al., 1996), and 
dividing this by the annual flux of 25,700 m3 of minerals gives an estimate of 8.3 million years 
for the age of the aquifer.  However, this calculation makes the assumption that aquifer porosity 
at the beginning of the Miocene was zero and that dissolution since the uplift of the Balcones 
Fault Zone has created the modern average porosity of 18%.  This is unrealistic since there is 
substantial porosity in the saline zone south of the Bad Water Line (Hovorka et al., 1996), and 
thus the initial porosity in the Edwards before the Miocene must also have been substantial.  
Deike (1990) measured the porosity of cores on either side of the Bad Water Line and found that 
the core in the fresh-water zone had a porosity of 44%, compared to 20% for core in the saline 
zone.  An increase in calcite and an almost total removal of dolomite indicated that 
dedolomitization close to the Bad Water Line was the major dissolution process (Deike, 1990).  
If half of the modern porosity of 18% has been created by modern (i.e. post early-Miocene) 
dissolution processes then the calculated age of the aquifer is 16.6 million years, which is within 
the early Miocene (16- 24 million years before present).  These calculations show that the 
development of the Edwards Aquifer since the early Miocene can be explained in terms of 
modern dissolution rates. 
 
Location of aquifer dissolution and movement of the Bad Water Line 
There are a number of dissolution processes taking place in the aquifer at present.  These 
include: 
i) dissolution of calcite and dolomite by water undersaturated with respect to these two 
minerals.  Creeks recharging the aquifer drain from the limestones of the Edwards Plateau 
aquifer and have high dissolved solids concentrations in most conditions, but much lower 
dissolved solids following major rain events.  Much of the calcite dissolution and some of the 
dolomite dissolution will take place in the unsaturated zone and will result in lowering of the 
bedrock surface. 
ii) dissolution of gypsum.  Springs and wells in the Edwards Aquifer typically have 
concentrations <5% of saturation, showing that there is little gypsum or anhydrite present.  
However wells south of the Bad Water Line have far higher concentrations.  Schultz and Halty 
(1997) found that anhydrite beds are almost absent to the north of the Bad Water Line and 
thicken significantly to the south of it (Figure 20).  This suggests that dissolution of anhydrite 
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close to the Bad Water Line has been associated with southward movement of that line and 
associated enlargement of the fresh-water zone of the Edwards Aquifer. 

 
Figure 20 Correlation between the position of the Bad Water Line and the thickness of anhydrite in 
Edwards Group strata along the section Y-Y' in Figures 17 and 18 (based on data from Schultz and Halty, 
1997) 
 
iii) mixing corrosion at the Bad Water Line of solutions with differing hydrogen sulfide 
concentrations.  The Edwards aquifer has high oxygen and low H2S concentrations, whereas the 
saline zone has low oxygen and high H2S concentrations, with oil-field brines thought to be the 
source of the H2S (Rye et al., 1981).  The mixing of these contrasting waters at the Bad Water 
Line can result in substantial dissolution of calcite or dolomite (Palmer, 1991).  
iv) mixing corrosion at the Bad Water Line of solutions with differing CO2 concentrations.  
As with H2S, the mixing of waters with differing CO2 concentrations can result in substantial 
dissolution of calcite or dolomite (Palmer, 1991). 
v) dedolomitization.  Dedolomitization at the Bad Water Line in the Edwards aquifer has been 
documented by Abbott (1975) and Deike (1990).  
 
The first of the five processes above is likely to occur predominantly in the unsaturated zone, but 
the remaining four occur predominantly close to the Bad Water Line, where possibly half of the 
total dissolution takes place.  The migration rate (m) to the south of the Bad Water Line can be 
calculated as a first approximation from equation 6. 
 

m = f n / (L z)                                                                                                                             (6) 
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where f is the flux of dissolved minerals removed from the area of the Bad Water Line, n is the 
increase in porosity at the Bad Water Line, L is the length of the Bad Water Line (about 300 km 
between the western and eastern divides, at Brackettville and Kyle, respectively), and z is aquifer 
thickness (190 m).  The average migration south of the Bad Water Line is 2.5 mm per year, 
assuming a porosity increase of 9% at the Bad Water Line.  This movement is equivalent to a 
total migration of 40 km over 16 million years.  This is more than the 30 km average width of the 
aquifer at present.  However, surface erosion over the last 16 million years must have removed a 
substantial thickness of the aquifer, and the 40 km estimate is of the correct magnitude. 
 
The above calculations demonstrate that current aquifer dissolution processes can be used to 
explain the development of the aquifer since the early Miocene, and that the current migration 
rate to the south of the Bad Water Line is roughly 2.5 mm per year.  This model is very different 
from earlier models.   
 
Abbott (1975) suggested that the fresh-water circulation in the aquifer commenced during the 
Miocene, but thought that the Bad Water Line represents "an early bypass boundary of the 
aquifer that has become deeply engrained with time" (Abbott, 1975, p. 251).  It is difficult to see 
how fresh-water flow could have been quickly established in the early evolution of the aquifer 
along a circuitous flow path to depths exceeding 1000 m below sea in southern Medina County.  
 
Deike (1990) suggested that a major part of the aquifer could have formed in the last 10,000 
years.  This rate is more than three orders of magnitude more rapid than the rate calculated 
above.  This would have resulted in solute concentrations of calcium, magnesium, sulfate and 
bicarbonate that are far in excess of solubility limits, and so such a short period of development 
is not likely. 
 
The present model postulates the progressive and gradual migration southward of the Bad Water 
Line since aquifer initiation in the Miocene.  The evidence from current dissolution rates and 
solute fluxes supports the model, with much of the current dissolution taking place at the Bad 
Water Line, which is migrating south at an average rate of about 2.5 mm/year. 
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4.4 Recommended location of conduits for the USGS MODFLOW model 
The major principles guiding the location of conduits for the MODFLOW model are as follows: 
 
1) As far as possible the distribution of permeability should result in honoring the most 
comprehensive potentiometric surface maps of the aquifer.  The most detailed potentiometric 
surface maps of the aquifer are in a series of county-scale USGS Water-Supply Papers 
(Livingston et al., 1936; Sayre, 1936; George, 1952; Holt, 1959; Arnow, 1963; DeCook, 1963; 
Welder and Reeves, 1964), supplemented by a detailed survey of the San Marcos area by Ogden 
et al. (1986).  Together these reports have 345 water-level measurements. 
 
2) Both theoretical investigations (numerical models of dissolution of carbonate aquifers) and 
empirical evidence (more than 10,000 tracer tests) provide unequivocal evidence that continuous 
conduits connect sinking streams and springs in carbonate aquifers.  Thus the major sinking 
rivers should be connected to the major springs by conduits.  This can be accomplished by 
introducing continuous lines of high-K cells that connect the sinking streams with the main 
springs.  This makes the Aconduits@ a quarter mile wide.  This is some 20-50 times wider than 
the actual likely width of the major conduits in the Edwards Aquifer.  This is the closest 
approximation that can be made with the current model. 
 
3) The major potentiometric surface troughs in the aquifer (near Uvalde, D=Hanis and in Comal 
County) coincide with structural grabens, and carbonate dissolution theory indicates that grabens 
are a favorable location for conduit development.  Thus grabens are used as a guide for locating 
conduits.  
 
4) In Bexar County there is a plume of water with EC similar to or lower than at Comal Springs, 
and this provides an excellent indicator of preferential flow, suggesting a major conduit (or 
conduits).  This putative conduit passes about 2 km southeast of J-17.  By contrast, the area 
northwest of J-17 extending up to the recharge zone generally has a much higher EC than Comal 
Springs and so cannot be on the highest permeability pathway to the springs. 
 
5)  Dissolution and the preferential development of conduits is favored on theoretical 
grounds in the deeper parts of the aquifer.  Expansion of the aquifer to the south seems to have 
been inhibited in Uvalde County by volcanic aquitards and in Comal and Hays counties by a 
major anticline immediately to the southeast of the Bad Water Line.  In Bexar County the water-
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quality data suggest the highest K is in a zone less than 2 km wide and is 3 - 5 km from the Bad 
Water Line.  The same may well occur in Medina County and in western Uvalde and eastern 
Kinney counties, but there is very little head or chemistry data close to the Bad Water Line to 
test this hypothesis. 
 
6)  The southeast trend of the Bad Water Line south of Knippa may be associated with a 
thickening of the Edwards sequence and a syncline at the base of the Edwards.  The Edwards 
Group is over 900 feet thick close to the Bad Water Line in Frio County.  The syncline is several 
kilometers east of the Bad Water Line, and it seems quite likely that conduit development in this 
area has preferentially occurred in this syncline. 
 
The location of conduits in Figure 21 is based on the above principles.  The numbers below are 
keyed to the numbers on the figure. 

 
Figure 21  Location of conduit networks connecting the major sinking streams and the major springs. 
 
1)  A conduit parallel to and some 1-3 miles from the Bad Water Line.  This could be 
extended to the west towards the divide if this helps the MODFLOW simulation.  The head data 
close to the Brackettville divide are sparse and a conduit in Kinney County is less important than 
further east since there is only a small flux of water moving eastward in this area. 
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2)  There is strong evidence for this conduit crossing the Uvalde structural dome.  It is the 
northernmost of three possible pathways shown in Figure 6. 
 
3)  Head data shows that flow to the south of Knippa is to the southeast. 
 
4)  The conduit shown follows the axis of the syncline. 
 
5)  Once the synclinal axis crosses the major fault that is downthrown to the south then the 
favored pathway is to the east on the downthrown side of the fault. 
 
6)  There is sparse data in this area, but other evidence suggests the conduit is 1-3 miles 
north of the Bad Water Line. 
 
7)  There is a fault here that is downthrown to the north, which favors development of a 
conduit parallel to and just north of the fault.  From the eastern termination of the fault the 
conduit seems to trend away from the Bad Water Line and is intersected by the Living Waters 
(catfish farm) well.  It then joins the other major conduit (see 10, below). 
 
8)  Potentiometric surface maps define a deep trough here, suggesting the conduit is just 
south of a fault that extends from just into Uvalde County almost as far as Hondo.  Close to 
Hondo a fault to the south makes the structure a graben.  The conduit is situated in the graben 
(Figure 6).  It is likely that this conduit was developed before the aquifer extended into south 
Medina County, and at that time would have carried the flow from Uvalde County.  It is possible 
that this flow path still carries much of the flow from Uvalde County.   
 
9)  The exact position of the conduit is poorly defined in this area.  It seems to pass south of 
Castroville.  Possibly the line of the conduit should be curved (concave to the north) rather than 
the straight line shown in Figure 9. 
 
10)  The conduit is well defined in Bexar County by the water chemistry data (Figure 19). 
 
11)  The conduit is close to and on the downthrown (south) side of the Comal Springs fault.  It 
is shown as ending at Comal Springs but it is possible that it continues close to the Bad Water 
Line as far as San Marcos Springs. 
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12)  Head and water-quality data suggest that some of the discharge from Bexar County flows 
to the NNE through this structurally low area with complex minor faulting. 
 
13)  The conduit is along the graben where post-Edwards strata outcrop at the surface.  Hueco 
Springs are on the conduit. 
 
14)  Head data suggest the conduit at this point heads NNE to flow NE on the northern, 
downthrown, side of two faults.  There are outcrops of post-Edwards strata in places on the 
northern side of these faults.  In the final few miles there is an absence of strong evidence of 
where the conduit is located, so it is shown as a straight line to San Marcos Springs. 
 
15) Flow in the Edwards Aquifer is in the same direction as the flow of most major sinking or 
losing rivers (West Nueces, Nueces, Dry Frio, Frio, Sabinal, Seco, Hondo, and Medina).  Major 
conduits are likely to be parallel to and quite close to these rivers except they are unlikely to 
follow all the meanders of the surface rivers.  These are shown in a very simplified fashion in 
Figure 20.  The conduits continue downdip (roughly southerly) direction in the confined aquifer 
for each of these sinking rivers to join up with the major strike-oriented conduits. 
 
16)  The 1951 and 1952 potentiometric surface maps (Holt, 1959) indicate flow to the south in 
the confined aquifer is blocked by faults.  The head data suggest the conduit from Hondo Creek 
flows south-west and then south to join the major conduit (#8) to the west of D’Hanis.  The 
Medina conduit appears to flow to the southwest on the northern side of Haby Crossing Fault 
where the displacement is 600 - 900 ft.  West of Quihi the displacement rapidly diminishes, and 
the head data suggest that the conduit heads south here. 
 
17)  Cibolo Creek generally flows parallel to the potentiometric surface in the Glen Rose 
formation.  Mace et al. (2000) give a detailed potentiometric surface map that shows that all the 
flow upstream of Camp Bullis is directed to a deep trough in the potentiometric surface, which 
enters the Edwards Aquifer close to UTSA.  However, other water-level data challenge the 
existence of this trough (A. Schultz, 2003, personal communication).  Water level and electrical 
conductivity data suggest flow in the confined aquifer is to the southeast as far as the graben 
north of the Alamo Heights Horst (Groschen, 1996).  The conduit is then likely to follow the 
graben towards Comal Springs. 
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18)  Head data suggest that groundwater flow under Cibolo Creek east of Camp Bullis is 
parallel to Cibolo Creek as far as the sharp bend where the creek turns south.  Flow from there is 
likely to be to the southeast.  The easterly flow parallel to Cibolo Creek is confirmed by mapping 
in Honey Creek Cave, where an east-flowing stream has been found in the southern part of the 
cave (Veni, 1994).    
 
19)  Blanco River flows parallel to the general potentiometric surface as it crosses the 
Edwards outcrop.  The conduit probably roughly underlies the river and then curves to the east 
towards the Bad Water Line and then south.  It may well parallel the Bad Water Line as it 
approaches San Marcos Springs.  The head data in this area are sparse, and some data suggest 
flow from the Blanco River is towards Barton Springs. 
 
It should be noted that the conduit locations described above and shown in Figure 20 are based 
on an analysis of the data described earlier, and are considered to be suitable for the current 
USGS MODFLOW simulation.  Some refinement of the conduit network has taken place in 
2002/2003 during the calibration by the USGS of the MODFLOW model.  Furthermore, recent 
work by Hovorka et al. (2003) has examined some aquifer data in more detail and is producing 
an independent assessment of conduit locations.     
 
The new USGS MODFLOW model represents a significant improvement over previously 
available numerical models of the Edwards aquifer.  Among new features, it incorporates a 
greatly refined cell size, much better estimates of pumping stresses, and a representation of the 
high-permeability zones or conduits.  The model is calibrated to the whole lateral extent of the 
aquifer rather than just one well (J-17) and two springs, which was the primary purpose of the 
previous model (GWSIM).  Furthermore, the model can be use with a modern, user-friendly 
interface, and thus has the potential of being much more widely used than earlier models. 
 
It is inevitable that there are a number of possible improvements that could be made to the model 
in the future.  The model is designed for aquifer-scale rather than local-scale simulations, and is 
limited to some extent by having a quarter-mile cell width, a single layer, by using a monthly 
time step, and by assuming homogeneity of properties within each cell.  A similar model has 
been prepared for the neighboring Barton Springs segment of the Edwards Aquifer, and Scanlon 
et al. (2003) discuss the uses and limitations of such models.  Refinement of properties such as 
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the time step used and the incorporation of turbulent flow in future models could potentially 
facilitate a better simulation of flow and transport in the aquifer, though more field data would be 
required.  Turbulent flow in conduits has been simulated in research models (Clemens et al., 
1996; Liedl et al., 2003), but such models are not yet commercially available.   
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