Purpose

Our project is a wireless sensor and communication system to record a responder’s three-dimensional motion relative to time. The data will be used to:

- Create 2D Mapping System
- Enhance Training
- In the future, power an augmented reality simulation

Background

The current industry standard for motion capture is a marker system that requires a 360 degree field of view along with several high resolution cameras and the wearer to be covered in restrictive marker equipment.

Our system:

- Is minimally invasive and does not require excessive equipment
- Operates in many environments
- Low cost which will greatly enhance the availability of training for municipalities

Approach

Hardware

- Inertial Measurement Unit (IMU) – Collect analog data
- Microprocessor – Convert to digital and process data
- Micro SD – Locally store data
- Bluetooth module – create local area network among devices and transfer data upon completion of simulation

Software

- Process digital data
- Visualization model
- Advanced Heading and Reference System (AHRS), Kalman Filter – To smooth the digital data

Project Goals

- Record motion and trajectory of the **body**, **gun**, and **head** of the wearer
- Non-intrusive design / integration with ALERRT Center equipment
- 2 hour battery life - minimum
- Simple and intuitive user interface
- Location mapping software

Use Cases

- Capture movement data from multiple training simulations over several hours

Hardware

- LiPo Battery
- Power Switch
- Microcontroller
- MicroSD
- Wireless Transmitter (HC-05)
- Wireless Receiver (HC-05)
- PC/Laptop
- User Interface

Software

- System Calibration
- User Interface
- Data Capture
- System Calibration Reporting

Control System

System Command Center

- System Power On
- Connection
- Calibration
- Capture
- Stop

- Standby
- Standby
- Steady State
- Recording
- Data Capture

- On/Off
- Steady State
- Recording
- Data Capture
- System Calibration Reporting

Progress

Completed:

- Filtering and calibration applied to sensor
- Integration of wireless capability (single unit)
- Visualization of sensor output data

Next Semester:

- Buildout user interface
- Automate data downloading
- Build prototype system (integrate multiple units)
- Fabricate enclosure
- Integrated testing

Stretch Goals:

- Virtualization using Unity
- Develop basic augmented reality experience

Acknowledgements

This would not have been possible without the support from these amazing people:

- **ALERRT Center:**
 - Dr. Hunter Martindale (Director of Research)
 - Mr. Coby Briehn (Program Manager)
 - Texas State University:
 - Dr. Stan McClellan (Faculty advisor)

Sponsored by the Texas State University ALERRT Center