Team I1.2 - Predicting On-time Performance in the Airline Industry Using Statistical Modeling

Nydia Huynh, Carlos Alvarez, Anthony Lako

Background Information

- Occasional flight delays cause disruptions in the worldwide transportation system.
- Airlines suffer penalties and fines which drive up operation costs.
- Passengers plan earlier appointments, increasing travel cost, in order to ensure on-time arrival.
- Accurate on-time performance predictions are crucial for decision making by all stakeholders in commercial aviation.

Problem Statement

The application of existing prediction models has fallen short of expectations in terms of their accuracy.

Project Purpose

This project will attempt to improve the precision of on-time flight performance prediction by applying machine learning and statistical methods to improve existing prediction models. Improved accuracy will enable all stakeholders to make better decisions, plans, and schedules.

Objectives

- Create code that interprets expected variables and their effect on on-time performance
- Implement machine learning to improve existing flight on-time performance models
- Create tabular and graphical output of on-time performance data that is user-friendly

Design Approach & Deliverables

Software Applications

An improved on-time performance model will be developed using Python language and machine learning applications in Spyder.

Design Model Structure

The model was constructed in two phases. Phase One is structured to predict whether a flight will be on-time or late. Phase Two will be structured to predict the number of minutes a flight will deviate from its scheduled departure and arrival time based on various input variables.

Project Schedule

Literature Review

- Prediction models have been in existence for quite some time.
- Models have been developed using statistical modelling, such as linear regression.
- Now, machine learning tools are being integrated in prediction models.
- These tools are capable of the most accurate prediction by seeking the correct methodology to use for the data.
- Example using machine learning tools:

Evaluation Criteria

Phase One:

- Metric: Binary
- Early by 1 or more mins
- On-Time (delayed by 0-14 mins)
- Delayed 15-29 mins
- Delayed 30 mins or more

Phase Two:

- Metric: Scale
- 0-5 mins
- 6-15 mins
- 16-29 mins
- 30-59 mins
- 60 mins or more

Acknowledgements

We would like to thank the following individuals for their help in our project:

Dr. Jiadong Wang - Sabre Corporation
Dr. Patrick Thomas - Texas State University
Dr. Zhijie Dong - Texas State University

Model to Predict On-Time Flight Performance

Team I1.2 - Predicting On-time Performance in the Airline Industry Using Statistical Modeling

User Interface:

How To: The user will enter their flight number in the search bar. The app will output the flight’s current status and reasoning.

Phase One:

Inputs:

- Important Time
- Actual Time

Outputs:

- Binary Solution: On-Time or Late

Phase Two:

Inputs:

- Important Time
- Actual Time

Outputs:

- Improved Graphical Outputs:

Google Flights is one of the few in the market that integrates machine learning tools to predict on-time flight performance. Their model has a prediction accuracy of 89%.