Binomial Coefficients

Binomial Coefficients

Daniel Shapiro

2020
Pascal’s Triangle

Binomial coefficients \(\binom{n}{k} \) are entries in Pascal’s Triangle.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>21</td>
<td>35</td>
<td>35</td>
<td>21</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>28</td>
<td>56</td>
<td>70</td>
<td>56</td>
<td>28</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index \(n \geq 0 \) vertically on the left, and index \(k \geq 0 \) across the top.
First called *Pascal’s Triangle* in 1708, after French scholar Blaise Pascal (1623-1662). But it arose earlier.

Italians call it *Tartaglia’s triangle*. After Niccolò Tartaglia writing in 1556.

Levi ben Gerson used factorial formula around 1300.

Called the *Khayyam triangle* in Iran. Persian Omar Khayyam ~ 1100.

Called *Yang Hui’s triangle* in China. Yang Hui 杨辉 (1238–1298) studied that arithmetic triangle, following Jia Xian 贾宪 ~ 1050.

Mahāvīra wrote the factorial formula for $\binom{n}{k}$, around 850.

Around 100 BCE, Indian scholar *Pingala* studied meters in Sanskrit prosody, and wrote about that arithmetic triangle. As well as: zero, binary numerals, binomial theorem, and Fibonacci numbers.
Three standard ways to define those entries $\binom{n}{k}$.

- Count how many k-sets are in an n-set.
- Additive Recursion: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.
- Factorials: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1) \cdots (n-k+1)}{k(k-1) \cdots 1}$.

With another sequence in place of $(n) = (1, 2, 3, 4 \ldots)$, that factorial formula provides an analogue of binomial coefficients.

Let $(c) = (c_1, c_2, c_3, \ldots)$ be a sequence of positive integers. Define the c-factorial to be: $\langle n \rangle!_c = c_n c_{n-1} \cdots c_2 c_1$.
For \((c) = (c_1, c_2, \ldots)\), define the \(c\)-nomial coefficients

\[
\begin{bmatrix} n \\ k \end{bmatrix}_c = \frac{\langle n \rangle!_c}{\langle k \rangle!_c \cdot \langle n-k \rangle!_c} = \frac{c_n c_{n-1} \cdots c_{n-k+1}}{c_k c_{k-1} \cdots c_1}.
\]

These numbers form the \textbf{Pascaloid Triangle} for \(c\).

Note: \([n\ 0] = 1\), and rows are symmetric: \([n\ k] = [n\ n-k]\).

If \(k > n\), define \([n\ k] = 0\).

\textbf{Definition}

Sequence \((c)\) is \textbf{binomiod} if all \([n\ k]_c\) are integers.
Binomioid examples.

- Constant sequence \((3, 3, 3, 3, \ldots)\) is binomioid.

Check: \[
\binom{n}{k}_c = \frac{c_n c_{n-1} \cdots c_{n-k+1}}{c_k c_{k-1} \cdots c_1} = \frac{3^k}{3^k} = 1.
\]

- \{ binomioid sequences \} is closed under multiplication.

That is: If \((a) = (a_1, a_2, \ldots)\) and \((b) = (b_1, b_2, \ldots)\) are binomioid, then the product sequence \((ab) = (a_1 b_1, a_2 b_2, \ldots)\) is also binomioid.

Corollary. Sequence \((n^2) = (1, 4, 9, 16, \ldots)\) is binomioid.

Choose your favorite sequence, construct its Pascaloïd Triangle, and see whether it is binomioid.
Before going to more examples, let’s review why
\((n) = (1, 2, 3, \ldots)\) is binomioid.
The usual proof uses counting or recursion.
We outline a purely **factorial proof**.
For a prime \(p\), what power of \(p\) occurs in \(n!\) ?

Lemma. \[
(\text{Exponent of } p \text{ in } n!) = \sum_{k \geq 1} \left\lfloor \frac{n}{p^k} \right\rfloor.
\]

Proof. In \(1, 2, \ldots, n\), count \(\left\lfloor \frac{n}{p} \right\rfloor\) terms with \(p\) as a factor.
But some terms involve more than one factor of \(p\).
Count \(\left\lfloor \frac{n}{p^2} \right\rfloor\) with \(p^2\) as a factor. Etc.
So: (Exponent of \(p\) in \(n!\)) = \(\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots\). QED
We outline a purely **factorial proof** that the sequence \((n) = (1, 2, 3, \ldots)\) is binomioid.

To prove: Every \(\binom{a+b}{a}\) is an integer.

Suffices to check, for every prime \(p\):

\[
\text{Exponent of } p \text{ in } \frac{(a + b)!}{a! \ b!} \text{ is } \geq 0.
\]

This follows from the Lemma, if we verify the following exercise. QED

Exercise. If \(\alpha, \beta\) are real numbers then:

\[
\lfloor \alpha + \beta \rfloor \geq \lfloor \alpha \rfloor + \lfloor \beta \rfloor.
\]
Easy Examples.

• How about \((c) = (2^n) = (2, 4, 8, 16, \ldots)\)?

Is every \(\binom{n}{k}_c = \frac{2^n}{2^k} \frac{2^n-1}{2^{k-1}} \ldots \frac{2^{n-k+1}}{2^1}\) an integer?

In general, notice that:

\[
\binom{n}{k}_c = \frac{c_n}{c_k} \frac{c_{n-1}}{c_{k-1}} \ldots \frac{c_{n-k+1}}{c_1}
\]

If \(c_r \mid c_s\) whenever \(r \leq s\), then this product is an integer.

Definition. \(c = (c_n)\) is a *divisor-chain* if \(c_n \mid c_{n+1}\) for every \(n\).

We have proved: **Every divisor-chain is binomiod.**
More challenging examples.

• Is \((2^n - 1) = (1, 3, 7, 15, \ldots)\) binomioid?

For example, \[
\begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 2^6 - 1 \\ 2^3 - 1 \end{bmatrix} \begin{bmatrix} 2^5 - 1 \\ 2^2 - 1 \end{bmatrix} \begin{bmatrix} 2^4 - 1 \\ 2^1 - 1 \end{bmatrix} = \frac{63}{7} \cdot \frac{31}{3} \cdot \frac{15}{1} = 1395.
\]

Prove: Every \[
\begin{bmatrix} n \\ 3 \end{bmatrix} = \begin{bmatrix} 2^n - 1 \\ 7 \end{bmatrix} \begin{bmatrix} 2^{n-1} - 1 \\ 3 \end{bmatrix} \begin{bmatrix} 2^{n-2} - 1 \\ 1 \end{bmatrix}
\]
is an integer.

Idea goes back 1808 with Gauss’s “\(q\)-nomial coefficients”:

Theorem. \((q^n - 1)\) is binomioid, for any integer \(q > 1\).

Perhaps this is not surprising because we know:

\[m \mid n \implies (q^m - 1) \mid (q^n - 1).\]

(How to prove that?)

Exercise. If sequence \((a)\) satisfies that divisibility property \((m \mid n \implies a_m \mid a_n)\), must \((a)\) be binomioid?
Gauss studied factorizations of $x^n - 1$.

\[
\begin{align*}
x^1 - 1 &= (x - 1) \\
x^2 - 1 &= (x - 1)(x + 1) \\
x^3 - 1 &= (x - 1)(x^2 + x + 1) \\
x^4 - 1 &= (x - 1)(x + 1)(x^2 + 1) \\
x^5 - 1 &= (x - 1)(x^4 + x^3 + x^2 + x + 1) \\
x^6 - 1 &= (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1)
\end{align*}
\]

Those factors are the \textbf{cyclotomic polynomials} $\Phi_n(x)$. Then

\[
\begin{align*}
\Phi_1(x) &= x - 1 & \Phi_2(x) &= x + 1 \\
\Phi_3(x) &= x^2 + x + 1 & \Phi_4(x) &= x^2 + 1 \\
\Phi_5(x) &= x^4 + x^3 + x^2 + x + 1 & \Phi_6(x) &= x^2 - x + 1 \\
\end{align*}
\]

Generally, $\Phi_n(x) \in \mathbb{Z}[x]$ is monic polynomial of degree $\varphi(n)$ and

\[
x^n - 1 = \prod_{d \mid n} \Phi_d(x),
\]
Divisor Products.

Definition. Sequence \((a) = (a_1, a_2, \ldots)\) is a *divisor-product* if there is an integer sequence \((b)\) such that

\[
a_n = \prod_{d \mid n} b_d, \quad \text{for every } n.
\]

\((*)\)

For instance,

\[
\begin{align*}
a_1 &= b_1 & a_2 &= b_1 b_2 & a_3 &= b_1 b_3 \\
a_4 &= b_1 b_2 b_4 & a_5 &= b_1 b_5 & a_6 &= b_1 b_2 b_3 b_6
\end{align*}
\]

If every \(a_n \neq 0\), solve successfully for \(b_n\). (Compare Möbius Inversion.)

There always exist \(b_n \in \mathbb{Q}\) satisfying equations \((*)\).

Divisor-products have all \(b_n \in \mathbb{Z}\).

Divisor-Product Theorem.

Every divisor-product sequence is binomiod.
For integer $q > 1$, observe that:

the sequence $q^n - 1$ is a divisor-product.

Because $q^n - 1 = \prod_{d|n} \Phi_d(q)$ and each $\Phi_d(q) \in \mathbb{Z}^+$.

Therefore: (Divisor-Product Theorem) ⇒ (Gauss’s Theorem).

For example, $2^n - 1 = \prod_{d|n} g_d$,

where $(g_n) = (\Phi_n(2)) = (1, 3, 7, 5, 31, 3, 127, 17, 73, 11, \ldots)$.

Exercise. Do these ideas generalize to show that $(3^n - 2^n)$ is a divisor-product?
Exercise. Which of the following are divisor-products?

- Constant sequence \((c, c, c, \ldots)\).

- \((c^n) = (c, c^2, c^3, \ldots)\).

- \((n) = (1, 2, 3, \ldots)\).

- Fibonacci \((1, 1, 2, 3, 5, 8, 13, \ldots)\).

- Euler function \((\varphi(n)) = (1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, \ldots)\).

- Any divisor-chain.

Hint. One answer for this exercise is “No.”

Is the set \{ divisor-products \} closed under multiplication?
PROOF of the Divisor-Product Theorem.

Given \(a_n = \prod_{d|n} b_d \). View the symbols \(b_1, b_2, \ldots \) as indeterminates.

Every \(\left[\begin{array}{c} r+s \\ r \end{array} \right]_a \) is a monomial fraction in \(b_1, b_2, \ldots \)

To prove: Denominators cancel. That is:

For every \(k \), exponent of \(b_k \) in that fraction is \(\geq 0 \).

- First: \(b_k \) is a factor of \(a_m \) \(\iff \) \(k \mid m \). (And \(b_k^2 \) is not a factor.)

- Second: \(\langle n \rangle! = a_n a_{n-1} \cdots a_2 a_1 \) so that:

 \((\text{Exponent of } b_k \text{ in } \langle n \rangle!) = \lfloor n/k \rfloor \).

- Finally: Exponent of \(b_k \) in \(\left[\begin{array}{c} r+s \\ r \end{array} \right] = \frac{\langle r+s \rangle!}{\langle r \rangle! \langle s \rangle!} \) equals

 \[\left\lfloor \frac{r+s}{k} \right\rfloor - \left\lfloor \frac{r}{k} \right\rfloor - \left\lfloor \frac{s}{k} \right\rfloor \].

 That is always \(\geq 0 \), by earlier Exercise. QED
NEW EXAMPLES. \((n + 1) = (2, 3, 4, \ldots)\) is NOT binomioid.

Instead let’s try the product sequence:
• \(n(n + 1) = (2, 6, 12, 20, 30, 42, \ldots)\).

It’s Pascalooid triangle looks like

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>21</td>
<td>105</td>
<td>175</td>
<td>105</td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>28</td>
<td>196</td>
<td>490</td>
<td>490</td>
<td>196</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise. Prove all those entries are integers.

Compute entry \(\binom{n}{k} = \frac{1}{k+1} \binom{n+1}{k} \binom{n}{k} = \frac{1}{n+1} \binom{n+1}{k} \binom{n+1}{k+1}\).
If true, then the “triangular number” sequence
\[
\left(\frac{n(n+1)}{2} \right) = (1, 3, 6, 10, 15, 21, \ldots)
\]
is binomioid.

That sequence is Column #2 in the classic Pascal Triangle:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>21</td>
<td>35</td>
<td>35</td>
<td>21</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>28</td>
<td>56</td>
<td>70</td>
<td>56</td>
<td>28</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Then Columns 0, 1, 2 are binomioid.
If true, then the “triangular number” sequence
\[
\left(\frac{n(n+1)}{2} \right) = (1, 3, 6, 10, 15, 21, \ldots)
\]
is binomioid.

That sequence is Column #2 in the classic Pascal Triangle:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then Columns 0, 1, 2 are binomioid.

How about Column 3 = (1, 4, 10, 20, \ldots)?
Here’s the Pascaloïd triangle for Pascal Column #3:

\[
\binom{n+2}{3} = \frac{n(n+1)(n+2)}{6} = (1, 4, 10, 20, 35, 56, \ldots)
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>35</td>
<td>175</td>
<td>175</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>56</td>
<td>490</td>
<td>980</td>
<td>980</td>
<td>56</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>84</td>
<td>1176</td>
<td>4116</td>
<td>4116</td>
<td>1176</td>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seems to be binomioid, and we wonder:

What about the other Pascal columns?
Theorem

Every column of Pascal’s Triangle is binomiod.

Our usual proof idea.

Each Pascal column \((c)\) is a sequence of binomial coefficients. Then each entry of the Pascaloiod Triangle for \((c)\) is a fraction whose numerator and denominator are products of various binomial coefficients.

Compute the exponent of prime \(p\) occurring in \(\binom{n}{k}_c\). That calculation is complicated because the terms themselves are messy. But it works. (I think.)
What about Pascal rows?

Row 3 is \((1, 3, 3, 1)\) but that’s really \((1, 3, 3, 1, 0, 0, \ldots)\).

But there are zeros in denominators for some \(\binom{n}{k}\)!

(More zeros in numerator than in denominator \(\Rightarrow\) set quotient = 0.)

Pascaloid triangles for Pascal rows (suppressing zero entries)

For \((1, 3, 3, 1)\):

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 1 \\
1 & 1 & 1 \\
2 & 1 & 3 & 1 \\
3 & 1 & 3 & 3 & 1 \\
4 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

For \((1, 4, 6, 4, 1)\):

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 \\
1 & 1 & 1 \\
2 & 1 & 4 & 1 \\
3 & 1 & 6 & 6 & 1 \\
4 & 1 & 4 & 6 & 4 & 1 \\
5 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

Those arrays indicate some rotational symmetry.

(Rewrite triangles to be equilateral to get better optics).

Exercise. Why does that always happen?
Here are Pascaloid triangles for the first few Pascal rows.

```
1  
1 1  
1 2 1  
1 1 1 1  
1 1 1 1 1  

1  
1 1  
1 4 1  
1 6 6 1  
1 4 6 4 1  
1 1 1 1 1 1  
1  
1 1  
1 5 1  
1 10 10 1  
1 10 20 10 1  
1 5 10 10 5 1  
1 1 1 1 1 1 1  

1  
1 1  
1 6 1  
1 15 15 1  
1 20 50 20 1  
1 15 50 50 15 1  
1 6 15 20 15 6 1  
1 1 1 1 1 1 1 1  
1  
1 1  
1 7 1  
1 21 21 1  
1 35 105 35 1  
1 35 175 175 35 1  
1 21 105 175 105 21 1  
1 7 21 35 35 21 7 1  
1 1 1 1 1 1 1 1 1  
```
Have we seen those numbers before?

Here again is the Pascaloidal triangle for Pascal’s second column \(\binom{n-1}{2} = (1, 3, 6, 10, 15, 21, \ldots) \).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>21</td>
<td>105</td>
<td>175</td>
<td>105</td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>28</td>
<td>196</td>
<td>490</td>
<td>490</td>
<td>196</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Each row here is Column #2 in one of the triangles above.

Note. Columns of the classical Pascal’s Triangle are binomioid. But that behavior is unusual: In the triangle above, column 2 \((1, 6, 20, 50, 105, \ldots)\) is NOT binomioid.
The Pascal rows produced a sequence of triangles. Stack them to obtain an infinite pyramid of numbers:

![Pyramid Diagram]

This pyramid has 3 faces. Only ones are visible on those faces, with larger numbers inside.

This number-pyramid has 3-fold rotational symmetry.
Remove one triangular face of ones, and the next visible face is the classic Pascal triangle.

What is the next triangular layer, cutting one step deeper?
Binomioid Pyramid Questions.

- What number is in position \((n, k, m)\)? That is, at the \(\binom{n}{k}\) position on the \(m^{th}\) level.

- Each entry of this Pyramid is a positive integer equal to a fraction involving several \(\binom{n}{k}\)’s.

 ¿ Is there a combinatorial interpretation?
 Does entry \((n, k, m) = \) the size of some natural set?

Possibly this will lead to a different proof that all entries are integers.
General Binomioid Pyramids.

Every sequence \((c)\) has its Pascaloid Triangle \(\Delta_c\).

Each row of triangle \(\Delta_c\) has its own Pascaloid triangle. Stack those to form the **Binomioid Pyramid for \((c)\)**.

- There is 3-fold symmetry.
- Pascaloid Triangles for the *columns* of \(\Delta_c\) appear as slices of that pyramid.
- Entry at position \((n, k, m)\) is a fraction involving products of various \(\binom{r}{s}_c\) terms.

Definition. Sequence \((c)\) is *binomioid at all levels* if all entries of its Binomioid Pyramid are integers.
Binomioid Pyramid Questions.

\((n) = (1, 2, 3, \ldots)\) is binomioid at all levels.

- Are divisor-chains always binomioid at all levels?
- Are divisor-products always binomioid at all levels?
- Any other examples?
THE END

Daniel Shapiro
Ohio State University
Ross Mathematics Program
July 2020