Tab 1 Acknowledgements
Tab 2 Introduction
Tab 3 History of the College
Tab 4 Academic Plan
Tab 5 Campus Background and Existing Conditions
Tab 6 Campus Planning Issues
Tab 7 Campus Master Plan
Tab 8 Central Plant Master Plan
Chilled Water and Power Systems
Tab 9 Appendix
Focus Group Meeting Notes
The Campus Master Plan 2008 for Lamar State College – Orange represents the collaborative efforts of the College Administration, the College’s Long Range Planning Committee, and the design team of Leo A Daly.

Special recognition should be given to:
Dr. J. Michael Shahan, President of Lamar State College - Orange
Dr. Charles R. Matthews, Chancellor of Texas State University System
Mr. William Ryan, Assistant to the President, Lamar State College – Orange

2008 Board of Regents, Texas State University System:
Bernie C. Francis, Chairman, Carrollton, TX
Dora G. Alcala, Del Rio, TX
Ron Blatchley, Bryan/College Station, TX
Dionicio “Don” Flores, El Paso, TX
Greg Wilkinson, Dallas, TX
Trisha S. Pollard, Vice Chairman, Bellaire, TX
Charlie Amato, San Antonio, TX
John E. Dudley, Comanche, TX
Michael Truncale, Beaumont, TX
Nicole Lozano, Student Regent, Huntsville, TX

The Master Plan Consultant Team:
LEO A DALY, Architects and Planners
Houston, TX
Lockwood, Andrews, Newnam Inc.
Engineers, Houston, TX,

The College acknowledges the time and input of the following committees:

Faculty Representatives
Phyllis Crow, Staff Advisory Council
Kevin Doss, Liberal Arts
Jim Ellis, Business and Technology
Stephanie Jones, Staff Advisory Council
Lori LeBlanc, Nursing and Allied Health
Sandy Ludwig, Staff Advisory Council
Kathryn Rector, Liberal Arts
Robyn Senter, Math and Sciences
Larry Wilmore, Math and Sciences, Chairman of Faculty Senate

Student Government Representatives
Anthony Barnes, Criminal Justice
Brian Felchak, Natural Science
Jenelda Davis, Nursing
Kristina Manuel, Business Administration
Joe Peevey, Kinesiology
Chance Reed, Student Body President
Chris Williamson, Natural Science

Vice Presidents, Deans and Division Chair Representatives
Bobbie Burgess, Vice President Student Services
Carla Dando, Dean of Instruction and Interim Division Chair for Arts and Sciences
Sheila Gunter, Vice President, Academic Affairs
Brenda Mott, Director of Education/ACE
Dana Rogers, Vice President, Finance and Operations
Gina Simar, Director of Allied Health Programs
Jackie Spears, Director of Business and Technology
The Lamar State College – Orange (LSCO) campus has undergone an amazing revitalization in the last ten years. It is now an elegant and clearly academic campus that not only solidly anchors the eastern end of downtown Orange but sets a design standard for the rebirth of this area.

The charge to this master plan team was to develop a collaborative process, which in turn, would ensure the continuation of the new campus image aesthetically and in support of the academic programs. The master plan will provide the proper framework for future building development, land acquisition, and enhancement of the campus environment.

The master plan is not timeless and should be reviewed upon completion of the first phase of implementation and thereafter on a regular basis.

Purpose of the Master Plan

The purpose of the master plan is to guide the continuing physical evolution of the Lamar State College-Orange campus, enable the College to manage change in an orderly fashion, enhance the functional effectiveness and be prepared to effectively anticipate growth.

This plan is intended to help ensure that LSCO will continue to be a physically attractive campus which supports its Academic Plan. In following this master plan the campus will continue to attract the best possible faculty, students and staff, be an asset to the Texas State University System and truly provide the higher education opportunities needed in this region of Texas.

The Six Goals Areas of the Master Plan:

Change: To accommodate change in an orderly and sensible manner, with enough flexibility to enable the College to adapt to new influences, programs and needs, which are currently unforeseen.

Cohesiveness: To provide directions and guidelines for future site and facility development. These guidelines will keep the campus in line with the physical character of the architecture and landscape.

Cost Effectiveness: To establish priorities for future development which recognize the availability of funds.

Design Efficiency: To enhance and establish proper facility use and building location, and to help ensure long term recognition of the appropriate land uses for the campus, additionally to stabilize a logical approach to the further development of the landscape environment and utility infrastructure.

Aesthetics: To maintain adequate areas of open space and to set a consistent standard of landscape and architectural development.

Relationship to the Community: To maintain the relationship of the campus to the downtown area, and support the City of Orange in providing a positive and attractive image while defining the edge of the campus.
The Lamar State College-Orange campus developed over a period of years through sporadic acquisitions of multiple properties and buildings in downtown Orange. The transition of the campus is quite remarkable considering that ten years ago the campus was:

- a disjointed group of miscellaneous buildings of a variety of original uses
- dissected by the city street grid
- with no paved parking and curbs
- no drainage or flood control

The history of the campus buildings is an interesting story of a successful application of the concept of adaptive reuse. A view of the campus buildings of today is of buildings that appear to be of the same approximate age, style and usage. In fact, all but the Ron E. Lewis Library started life in quite different uses.

The Allied Health Building was built in 1902 as a grocery business.

The Student Center was built in the 1970's as a Western Auto store.

The Academic Building has been a wholesale supply company, a bowling alley and a restaurant.

The Wilson Building was originally a dry goods store.

The Green Avenue Building was a retail strip center.

A renewal of the campus occurred after the last campus master plan done in 1997. The goal of the 1997 plan was to develop a new image for the college, to consolidate its disjointed collection of buildings into a pedestrian friendly campus to better support its academic mission.

To achieve the consolidation, the design team created a unified block of properties. The plan consolidated the campus into a four block pedestrian zone by closing two bisecting streets and developing pedestrian walkways and defined open spaces. In order to accomplish this change several dated and ill-located buildings were demolished.

The first phase of the 1997 implementation plan included site development and landscaping that defined the central campus zone, a new central energy plant and expanded classroom facilities.

During this phase it became obvious that the multi-property campus also needed a significant building to serve as a central unifying focus to the campus as well as an anchor for future downtown development. The Ron E. Lewis Library and Administration Building was conceived to serve this end as well as provide a new and desperately needed image to the campus while maintaining compatibility with the existing neighborhood context.

The second phase of the 1997 implementation plan included redevelopment of the old library space in the Wilson Building for offices and classrooms, the renovation of the Green Avenue Plaza for a bookstore and classrooms, the renovation of the student center, academic building and further site and parking improvements.
History

Lamar University opened its first extension center in Orange in the fall of 1969 with classes in the former Tilley Elementary School. In 1971 the Texas Legislature passed legislation allowing Lamar University to operate a two-year educational center, thus removing the extension status and allowing students to take two full years of coursework on the Orange campus.

In 1971 fire destroyed the building, and a spirited community-wide fundraising effort netted more than $250,000 for the purchase of the former Sabine Supply Company building, located at 410 Front St., Orange. Classes began at the new location in the fall of 1971.

Since that time facilities, enrollment and course offerings have grown steadily. Instructional programs are offered in five divisions: liberal arts, mathematics and science, business and technology, education and allied health.

The Texas Legislature authorized the creation of the Lamar University System in 1983, and in 1991 the legislature provided degree-granting authority to LU-O. Effective Sept. 1, 1995, LU-O, along with sister institutions in Port Arthur and Beaumont, became part of the Texas State University System. With system offices in Austin, the TSUS also included Angelo State University, Sam Houston State University, Texas State University-San Marcos (Southwest Texas State University), Sul Ross State University and Sul Ross State University Rio Grande College.

During the 1999 legislative session, Lamar University-Orange was officially renamed Lamar State College-Orange (LSC-O), and funds totaling nearly $10 million were authorized for a new main building, a central plant and campus infrastructure. The building was occupied in May 2001.

Lamar State College-Orange currently has a student body of approximately 2,000. Two-year academic programs are offered in business, communication, computer science, criminal justice, elementary education, liberal arts, natural science and sociology. These academic programs lead to associate of science degrees and will transfer to four-year institutions for students seeking baccalaureate degrees. Thirty technical programs are available, leading to associate of applied science degrees, certificates of completion and institutional awards.

Mission

Lamar State College-Orange is an open-admission, lower-division state institution of higher education within the Texas State University System.

Our mission is:

a. To provide academic transfer and associate degree programs to prepare students for senior colleges and universities;
b. To provide technical certificate and associate degree programs to prepare students for employment;
c. To provide developmental programs for students not ready for college-level work;
d. To provide continuing education and customized training programs for those pursuing areas of personal interest or upgrading employment skills; and
e. To provide community service activities that promote economic development and cultural awareness.
Institutional Goals (2008-2013) - Critical Areas

GOAL I
Promote learning through curriculum and instruction that respond to student learning needs.

1. Maintain an academic course inventory that provides a solid foundation of general education that is fully transferable to senior institutions.
2. Develop and maintain vocational/technical degree programs that are relevant to student interests and labor market demand.
3. Provide a program of developmental education in reading, writing, and mathematics enabling students to succeed in college-level work.
4. Provide course work for diverse populations that will allow student success in college-level work.

GOAL II
Facilitate student success by providing quality student support services and programs.

1. Provide a "campus life" and cultural enrichment activities that are relevant and appealing.
2. Provide library and other learning resources that meet and enhance student learning.
3. Offer advising/counseling activities to a wide range of student populations that both prevent and mitigate the obstacles to student success.

GOAL III
Respond to community, business and industry needs by providing effective non-credit, customized training and service activities.

1. Develop a continuing education program that is responsive to community needs.
2. Engage with business and industry through partnerships, collaborative efforts, and mutually beneficial relationships to promote economic development and train a skilled workforce.

GOAL IV
Attain, retain, and support faculty and staff of the highest caliber to accomplish the institution's mission.

1. Provide opportunities for professional growth that support excellent service.
2. Attain a diverse faculty and staff that are representative of the institution's service area.

GOAL V
Secure and maintain physical, financial, technical and administrative resources to accommodate the development of the institution.

1. Maintain facilities that accommodate both needed flexibility and long-range planning for instruction and support services.
2. Provide appropriate and up-to-date equipment and facilities to meet instructional and support services needs.
3. Engage in responsible financial management policies and practices that ensure the current and future operations of the institution.
GOAL VI

Engage in comprehensive, continuous institution-wide planning and evaluation to ensure institutional effectiveness.

1. Nurture an effective planning system that involves broad-based campus participation that is tied to resource allocations.

2. Ensure the use of evaluation results for continuous improvement in all planning activities.
I. Introduction
The Academic Master Plan for Lamar State College–Orange establishes a vision for advancing the college’s instructional mission. The plan is based upon an assessment of our current strengths and weaknesses and our best estimates of future trends in the state and local economies. The plan attempts to balance projected needs with anticipated resources in an effort to produce a realistic guide for the future. The plan is meant to serve as a “roadmap” that will guide the college in developing goals and strategies that will strengthen its commitment to providing quality education for its students.

II. Credit Instruction
A. Academic Transfer
 2. Assumption: demand for academic transfer courses will grow due to several factors
 a. Growing price differential between tuition and fees at Lamar State College–Orange and the rates charged by four-year institutions.
 b. Impact of the Inspire XII scholarship program.
 3. Growth Potential
 a. Fine Arts: the proximity of the campus to the Stark Museum, Lutcher Theater, and the Community Playhouse provides an opportunity to leverage those resources and expand course offerings in the fine arts and humanities.
 b. Larger Classrooms: Many of our students balance their studies with job and family responsibilities. Morning classes are by far the most popular, but there are a limited number of classrooms and time slots. Larger classrooms would allow us to accommodate more students during peak hours.
 c. Sciences: The demand for Allied Health programs continues to be strong. Because these programs require a strong foundation in biology, there is a potential for increased class offerings.
 d. English as a Second Language: The Hispanic population in Southeast Texas is increasing and is projected to continue to increase. This demographic change could produce a demand for ESL courses and a greater demand for developmental services.

B. Career/Technical Programs
 1. Components: Allied Health and Business/Industrial Technology
 2. Assumption: potential growth of business/industrial programs is directly related to the local economy and local employment opportunities.
a. Allied Health: Demand for workers in health-related fields will grow as the senior population increases.

b. Business Technology: Higher levels of computer literacy will decrease the need for basic computer instruction. Demand for basic instruction in information technology should remain steady.

c. Industrial Technology: Area plant expansions will fuel demand for skilled construction workers. An aging workforce will create opportunities for workers trained in operating and maintaining petrochemical facilities.

3. Growth Potential
 a. Allied Health
 (1) Physical Therapist Assistant
 (2) Radiology Assistant
 b. Industrial Technology
 (1) Process Operators
 (2) Industrial Maintenance
 (3) Construction Trades

III. Non-Credit Workforce Training/Continuing Education

A. Assumptions: The demand for short-term, skills specific training will increase due to changes in technology and workforce demand. Such training can prepare entry-level workers for initial employment or provide experienced workers with new skills that meet employer needs.

B. Growth Potential
 1. Short-term training (skill specific training such as forklift operator, blueprint reading, OSHA rules)
 2. Professional CEUs
 3. Managerial/Supervisor training

IV. Instructional Environment

A. Traditional classrooms will require a heavy investment in technology to accommodate multimedia presentations and computer access.

B. Distance Education will grow in response to student demand. Technology must be in place to support these programs.
C. An increasing reliance upon technology will create more demand for faculty/staff development.

V. Partnerships: Economic constraints and political pressure will place more emphasis on partnerships with other educational entities and with the private sector.

A. Career/Technology Center: Vocational training is expensive and cost prohibitive without a sufficient base of student enrollment. A county vocational center could benefit the college and local school districts.

B. Internships: Partnership with private business can provide opportunities for on-the-job training that are superior to lab simulations and that require no capital investment.

VI. Academic Rigor: The college must take steps to ensure students receive training and instruction which meets the standards of a college education.

A. Content: Course content must be reviewed on a regular basis.

B. Evaluation Methods: Fair and consistent means of assessing student performance and mastery of basic skills.

C. Critical Thinking: Classroom instruction and extracurricular activities should promote the essential elements of critical thinking.
Today, the campus of Lamar State College-Orange has a distinct identity and image. Most edges of the campus are well identified with nicely designed monument graphics. The school has been predominately consolidated into a four block pedestrian friendly zone which coherently supports the school’s academic mission and establishes a landscape and hardscape standard for the eastern area of downtown Orange.

Narrative of Building Histories

Ron E. Lewis Library
290 North Fourth Street

The focal point of the campus is the Ron E. Lewis Library and Administration Building, completed in 2001, which anchors the campus and is surrounding by campus greens. Covered arcades on two sides of the building provide pedestrian connections to key campus buildings and primary parking. The building provides a new academic image to LSCO while maintaining compatibility with downtown Orange. The three story brick building houses the library and media center functions on the first two floors and LSCO Administration and Student Services on the top floor.

Allied Health Building
302 Front Street

The Allied Health Building, a two story building, was built in 1902 and was known as the “Miller Building”. The Orange Grocery Company was lodged in the building in 1910. In 1940, the Dallas-Beadle Furniture Store occupied the building and remained for many years. Levingston Shipbuilding used the building for its general offices from about 1955 to the early 1980’s when the shipyard closed. Offshore Pipeline, Inc. (OPI) obtained the building a few years later when they purchased the Levingston properties. OPI did not occupy the building and, in 1991, donated it to the Lamar University-Orange foundation. The foundation deeded the property to Lamar University-Orange.

Lamar University-Orange applied to the U. S. Department of Commerce, Economic Development Administration (EDA) for a federal grant to help fund the cost of renovating the donated building for use as a nursing/allied health classroom facility. A grant of $900,000 was approved in August 1994. The EDA grant enabled the University to totally renovate the outside and first floor of the building in 1995. The renovation of the remainder of the building was completed in 2001.

Currently, the Allied Health Building appears in good physical shape. However it is inadequate in size as the program is badly in need of additional space and especially in order to grow. The program gets more applicants each year than they can accept. Due to the original construction type, flexible space planning is limited by the shallow column bays. On the second floor this has been managed with the renovation into multiple narrow but tiered classrooms. The building corridors seem spacious enough but many faculty offices open directly into the corridors and the offices are small. In addition the office support space and departmental spaces are quite cramped. Some of the adjunct faculty members are currently housed three to an office.

Currently, the Allied Health Building appears in good physical shape. However, it is inadequate in size. All programs need additional space to grow. Programs get more applicants each year than can be accepted. Due to the original construction type, flexible space planning
is limited by the shallow column bays. On the second floor this has been managed with the renovation into multiple narrow but tiered classrooms. The building corridors seem spacious enough but many faculty offices are small. In addition, the office support space and departmental spaces are cramped. Some of the adjunct faculty members are currently housed three to an office.

Academic Center
410 Front Street
This building was originally occupied by a wholesale supplier, the Sabine Supply Company. After Sabine Supply moved to a new location, the building became a community bowling center and restaurant.

LSCO acquired the Academic Building in 1971 after a fire destroyed its original location in a former elementary school building. A community wide fund raising effort netted more than $250,000 for the purchase. Classes began in the building in fall 1971 after LSCO acquired the vacant building. The Academic Building was renovated in 2003 as part of the Phase II Improvements and now houses computer and science laboratories as well as general classrooms and offices. Two older classrooms were remodeled into biology laboratory, the corridor floor and wall finishes were replaced, a covered smoker's area was added, and an entry canopy replaced. The HVAC system for the building was inadequate for its current occupancy and 75% was replaced. Additionally, the Exterior Insulated Finish system (EIFS) was restored to like-new condition.

With the exception of one, classrooms in this building are too small. Several classrooms have poor acoustics and students complain they can not hear the instructor. Some classrooms do not have the capability for projection equipment and screens.

Student Center
407 Green Avenue
The Student Center was formerly a Western Auto Store in the early 1970's. After LSCO acquired the building in 1988, it was extensively renovated. A gymnasion was added and the building became the campus Student Center. A subsequent renovation included replacing the gymnasion flooring, modifying the controls for the HVAC system, refurbishing the racquetball courts, replacing the corridor floor and wall finishes and adding a covered smoker's area and canopies over the entrances. Additionally the EIFS exterior veneer was restored to like-new condition.

Currently this building is in adequate physical condition. In some areas with exposed precast concrete double-t structure, there is evidence of peeling paint.
Green Avenue Building
418 Green Avenue
This building was built as a small multi-tenant retail center. It has had several partial interior renovations in order to adapt the building to classroom and faculty office usage. As part of the Second Phase of the 1997 Campus Improvement Project the exterior EIFS surface was restored to like-new condition.
Currently this building appears to be in adequate repair.
The building currently contains one outside lease space, the campus bookstore, and instructional and administrative support offices.

Wilson Building
506 Green Avenue
This building was purchased by LSCO in 1988. It was partially renovated in 1989 for the library on campus. Previously, library service was contracted through the City of Orange Public Library. After the new Ron E. Lewis Library Building was built and the library moved in 2001, the Wilson Building was totally renovated for classrooms and workforce development in 2003. Currently the building appears to be in good physical repair.
Currently, this building houses workforce development initiatives and teacher preparation programs.

Physical Plant
406 North Fourth Street
1500 Pier Road (off campus leased facility)
The facility was a World War II Quonset hut. The campus leases this space from the Port of Orange to accommodate its non-credit welding program funded by a grant from the Department of Labor.
The planning issues which are the basis for the master plan were formulated with the LSCO planning team through meetings, interviews, focus groups and tours of the campus. These issues serve as planning assumptions as well as planning concerns.

Identity
- The campus edge has a standard of monument signage to define the perimeter of the campus but it does not occur on all corners.
- College signage should be designed to be more apparent and standardized for buildings that are outside of the main campus block.
- The campus “district” should be more apparent to traffic on Green Avenue to provide a safer environment for students crossing Green Avenue and for visitors looking for the campus.
- On-site directions should be evident to the users and visitors to the campus.
- A campus map should be provided on the LSCO website.
- A visitor information and reception point should be identified.

Vehicular Circulation and Parking
- Find additional accessible parking for the Allied Health Building.
- Control student parking in non LSCO designated zones.
- The impact of Green Avenue as a state highway is of great concern. TxDOT has removed all traffic controls from the intersections near the campus. Pedestrians are crossing in rapid traffic and not at legal intersections.
- Between campus parking, city street parking and allowed areas of parking at the city library, parking is adequate for average school days particularly in the afternoons. In fact students have become so used to immediately adjacent parking that when it is unavailable, they tend to park illegally. This is a perception issue as students on most college campuses have much longer walks to class.
- Students use the west parking at the Wilson Building which is not owned by the college. Provide LSCO parking for these academic programs.

Pedestrian Circulation
- Pedestrian circulation on campus is very well organized and utilized as evidenced by the lack of worn “paths” through grass areas.
- Without any traffic controls, crossing Green Avenue is problematic and potentially hazardous situation.

Site Development and Campus Land Use
- The location of future building sites on campus should be identified and preserved.
- The direction of campus growth should be identified so that as properties become available, LSCO will have direction for appropriate land acquisition.
- The existing site plan design of green areas surrounding buildings should be maintained.
- Downtown Orange is to the west of the campus. The City of Orange currently has a study underway for a rebirth of the downtown area. The campus layout responds well to the new plans. All new planning and architectural designs should be in alignment with the new downtown plan when approved.
- The areas to the north of the campus are very transitional in nature. Although to the northwest is an elegant area of historic homes, this area is not visible from Green Avenue and the campus. More adjacent to the campus are small businesses, commercial
properties of a light industrial nature. Mixed with these are miscellaneous residential properties of various sizes and levels of upkeep. There is also a significant amount of empty lots.

- Directly to the south of the campus is the waterside park. A small portion is partially owned by the college and provides an opportunity for development as leisure space and outside event space. The park borders the waterway and an island with developing industrial facilities.

- East of the campus is the area of most concern. The first couple of blocks are similar to the area to the north. But after that is an area of heavy industrial facilities. There are always cars parked along all the curbs and there is serious flooding during heavy rains. Visible beyond are the marine facilities which utilized large cranes, large dry docks, and port like equipment and contain large tankers that are unloaded and sitting very high in the water and are unattractive.

- There is interest by the Student Government Association in starting an outdoors recreational sports program. This program would basically be focused on intramural and “pick up” style games potentially for basketball, soccer, football, Frisbee and other sports and games. They would like the area for these sports to include some outdoor space for studying, reading, or casual group meetings.

- The property to the east of the campus that may be considered for acquisition has above ground utilities. Refer to Section Eight.

- The blocks to the east have city streets and alleys that correspond to the original streets through the LSCO campus. These streets and utilities will have to be removed and abandoned if the properties are acquired.

Space Needs
- Space assignments in the campus buildings should promote spatial equity and appropriateness across academic programs.

Ron E. Lewis Library
- The Ron E. Lewis Building has several different uses. The library lobby is a large space with solid walls on the sides and the location of the library is not apparent.

Allied Health Building
- More classroom, office, labs and visitor spaces, storage and file space should be made available to the Allied Health programs.
- The programs in this building are in need of a large classroom for 80 to 100 students.
- Provide space for new programs to be initiated such as physical therapy assistant.

Academic Building
- The science program, located in this building, needs larger and more classrooms.
- Two additional lecture halls for 80 students each to be added.
- More dedicated labs to be added with and adjacent hazardous materials area.
- Additional computer labs to be added.
- Existing labs share functions between programs. This means that students cannot work on their projects outside of class time. It is also problematic for classes of varying lab equipment and needs to share the same space.
Student Center
- Provide additional space for fitness and weight machines.
- Provide meeting space for campus organizations with appropriate technology.
- Provide additional and alternate food service areas such as an internet café or coffee bar.
- There is an obvious lack of storage space in this building as a conference room is being utilized.
- Programatically the number of racquetball courts is more than needed but the area of fitness and weight machines is undersized. Equipment is so packed in some are unusable.
- The gymnasium is the largest space in Orange and is available for meetings and banquets to the community as well as campus groups. There are definite limitations for this usage however. The setup between classes, recreation activities and meeting usage is time consuming and often interferes with the physical education class schedule. There is no storage space for the furniture and equipment needed to set up different meeting types. In addition there is no space for a caterer to set up for food preparation or service. If the gymnasium were to be expanded, it is possible that LSCO might be able to generate revenue by renting the facility for events.
- There are numerous student organizations on campus but none have assigned meeting spaces. Classrooms are used on a catch-as-catch-can basis. Often room #202 is used but it does not have a computer, projector or screen.

Green Avenue Building
- The building is clearly a former retail strip building and in spite of several updates, retains this identity. There is parking immediately in front of the building with no green space which is now the standard on campus. In addition because it is not in the main block of the campus, it is not easily identified as part of LSCO. The location of this building is also unfortunate because it forces students to cross Green Avenue which is a Federal Highway and has no traffic controls.

Wilson Building
- The location of this building is unfortunate for the campus as it is one block removed from the main campus and forces students to cross Green Avenue which is a Federal Highway and has no traffic controls.

Performing Arts
- The performing arts curriculum has expanded significantly in recent years.
- The program will have a need for performing arts practice and theatre space. This program is interested in starting a theatre science program but currently does not have the space to house it.

Industrial Technology
- This program needs an on-campus building that is sufficient in size to support the program in terms of project and materials sizes and types of welding processes.
- The students should be more integrated with the main campus students.
- In the existing facility, there is not enough room for larger projects which are more similar to real on the job projects.
- Also for security, management and student involvement reasons, the
programs should be integrated with the main campus.

Architectural Standards
- The architectural nature of the Ron E. Lewis Library Building has provided the basis for a new image for the campus architecture which supports the academic mission of LSCO and to contribute positively to the campus community.
- Standards for future buildings should include the protection of entry ways into buildings from rain.
- Maintenance of buildings and landscape needs to be continued as a priority of LSCO.
- The architectural standards for future buildings should maintain the context of a downtown campus.
- Campus buildings should form a community with each other and downtown Orange.
- The campus view of the neighborhoods to the north and east should be buffered and screened.

Utilities and Central Plant
- The capacity of the central plant should be analyzed and its expansion should be projected for campus growth.

Miscellaneous
- The Continuing Education Department has a need for dedicated space. They must compete for classroom and laboratory space with credit and degree programs.
- Throughout LSCO there are new programs being considered. These include theatre arts, physical therapy assistant, horticulture and construction sciences. There is no space on campus for any new programs to start nor for any to grow.

- The Orange area has a new scholarship program that has been funded by the local community. This program ensures that a student graduating from local high schools is guaranteed four years of tuition at any Texas school. LSCO is anticipating that many will choose to take the first two years at LSCO and then transfer. There is a potential for LSCO to grow significantly.
The master plan is a framework for future decision making. It is a guide to the physical evolution of the campus and responds to the goals and ambitions of Lamar State College – Orange.

The previous master plan presented a strong new concept for the campus which has been implemented. The campus is now primarily contiguous and has a new image.

The critical aspect of this master plan is to identify those elements that need to be addressed and to provide a road map to help guide in the daily decisions which influence the physical attributes of the facilities and the campus.

Recommendations

The recommendations of the 2008 Master Plan are planned to be completed in two time frames:

- Phase One is aimed at the College’s immediate needs, to be accomplished within three to five years. The priority projects include the expansion of the Student Center Gymnasium and a new Industrial Technology Building.
- Phase Two is a long term plan to be accomplished over ten years. The goal of this long term plan is to give the College direction to acquire appropriate additional properties should they become available. The plan also reflects a concept for the campus site plan and future building locations that is not linked to a specific phasing plan. New buildings can be added as their need arises in whatever order is appropriate.

The Master Plan report contains planning and design considerations through narrative and graphics. Drawings are included at the end of this section.

The following outlines specific recommendations which are organized in eight planning issue categories: identity of the campus, vehicular circulation and parking, landscape development, space needs, architectural standards, utilities and miscellaneous goals.

These are not listed in priority order.

Campus Identity

- The corner monument design that currently exists on two corners of the campus should be repeated wherever possible on campus corners.
- The portions of Green Avenue that are adjacent to the campus should receive a special treatment to identify that drivers are passing through the college area and especially that they should slow down and be aware of pedestrians. Possible treatments are tree lined edges, ornamental pole lighting, special paving materials and colors, and banners or flags.
- A central reception and visitor information kiosk might be established in the lobby of the Ron E. Lewis Library.
- A graphic design should be developed to appear on buildings that are outside of the campus area to easily identify them as LSCO facilities.
- The College might consider adding an electronic marquee to announce upcoming events and news.

Vehicular Circulation and Parking

- LSCO should encourage the city to penalize illegal parking.
- Additional parking areas can be established on the north side of Green Avenue. With the addition of trees and landscaping, this achieves two additional goals: the blocks to the north of campus would be visually buffered and it would create the identifiable visual zone of the campus.
Identification of the college zone might encourage traffic to slow down. This state highway could take on more of a boulevard feel.

- Private vehicles should always be limited to the perimeter of the campus.
- Ultimately provide all LSCO parking on campus owned property. Have city designate adjacent streets as non parking zones.

Pedestrian Circulation

- LSCO must work with TxDOT to develop ways to allow safe crossing of Green Avenue by pedestrians.
- All new buildings added to the campus must be designed to continue the pattern of pleasant pedestrian walkways with benches and landscaping. Pathways should connect all buildings and parking areas.
- The two major east-west pedestrian ways should be extended into all new areas of campus and reinforce the idea of campus streets.
- When at all possible provide covered open air pavilions for refuge in inclement weather and casual resting spaces between classes from the sun.

Site Development

- As available, additional property should be acquired to the east of campus. The property could include the next two eastern blocks adding a total for four city blocks to the campus.
- Two blocks of Main Street and two blocks of Second Street should be abandoned and added to the campus useable land.
- Four square blocks to the east of campus, bordered by Front St., Second St, Mill St. and Green Ave. should be added to campus. Acquired land should include open green areas and space for recreational sports activities.

- The two blocks on the far east side of campus should provide a visible barrier and sound buffer from the shipbuilding industrial facilities.
- As it becomes available, property on the north side of Green Avenue should be acquired to a depth of half a block. This land would be used for landscaped parking.
- The Wilson Building should be dedicated to indirect uses such as continuing education for the community and classes that are located there should be moved to the main campus.
- The classes and uses in the Green Avenue building should be moved back onto the main campus.
- All walkways should continue the established pattern of continuous trees, expanded decorative paving and plantings at intersections, lighting and benches.
- New building sites should be identified and held available. All new buildings should be surrounded by open green areas.
- All new campus areas should maintain the same lighting level for parking and green areas as the existing campus.

Space Needs

Ron E Lewis Library and Administration

- An information and visitors desk should be added in the lobby of the building.
- Expose and identify the various programs by adding interior glass lobby walls where possible. Example would be into adjacent library space.

Allied Health Programs

- Provide a new academic and lab building for these and future programs.
- The existing building should be maintained and used as general lecture
space and space for developmental programs. This building could potentially be a liberal arts building.

Academic Building
- The first new academic building added to the campus should include large generic lecture halls to be used by all programs.
- Lab spaces that are used by the health programs will be located to the new Academic Health Building. Some existing laboratories can be expanded for the use by other science programs.

Student Center
- For Phase One, possibly construct an addition to the Student Center gymnasium. This space will contain a catering kitchen, equipment and furniture storage, and a manager’s office. The space of unused racquetball courts should be reconfigured for a more efficient and spacious health and fitness center.
- For Phase Two, a new multipurpose center will be constructed to include program spaces for a physical therapy program, a large program of classroom spaces, organizational meeting rooms, supportive food service spaces and student study areas.
- Ultimately a conference center type space may be needed which would be utilized for future environmental conferences held by the Stark Foundation.

Green Avenue Building
- When a new academic building is added to the campus, the academic functions in this building should be moved to the old Allied Health Building. The bookstore should move to the first floor of the new student center.

Wilson Building
- When a new academic building is added to the campus, the academic functions in this building should be moved to the old Allied Health Building.
- The building should be maintained as a continuing education facility. It may also have use as rental space for community meetings or conferences.

Industrial Technology
- Construct a new one story building for this program as part of Phase One. This building could be a metal building with roof and exterior veneer to match the other campus buildings.
- The building should have some classroom, office, storage and lobby space that is air-conditioned.
- The building needs an elaborate venting system to keep the students as comfortable as possible and for safety.
- This building should be designed for flexibility. The welding program is a state and federally sponsored program which could be cancelled or substituted by another program. LSCO may choose, at some time, to offer vocational training classes or more technical continuing education programs.
- A secure outdoor space should be included for special projects.

Performing Sciences
- If this program is expanded a new facility may be added.
- Performance theatre to seat 500.
- The facility to include classrooms, offices, a costume design lab,
dedicated speech room area and practice rooms.
- Building location might be the CapitolOne Bank property or any of the other identified potential building sites.

Architectural Development
- All new buildings should respond in color, materials and style to the Ron E. Lewis Building. As buildings are replaced, the quality of the overall campus architecture can be improved.
- Other than Academic Building 3, which might be conceived as a counterpoint to the Ron E. Lewis Library, on the Phase Two plan, all buildings on campus should be limited to two stories.
- All buildings should have covered entryways or colonnades to building entry points.

Utilities and Central Plant
- Refer to the MEP report in Tab Eight.

Miscellaneous
- All future changes on the campus and to the building should promote sustainability, respect for the environment and energy efficiency.
- Campus buildings should be well maintained and preserved until the end of their life expectancy.
- The phasing of new buildings on campus should allow for older buildings to remain in use until replacement buildings are completed.

Sustainability
- All new construction projects should adopt a long term perspective which factors in life-cycle costs, reduced energy and water consumption as well as the health of students and employees in spite of assumed higher initial costs.
- All new construction should implement day lighting strategies to reduce energy costs and improve student performance,
- All new construction should follow the Texas State University System standards for LEED building ratings, if implemented.
- Landscaping design should minimize maintenance by using native species, long naturalized plants.
- Light sensors in all day lit areas, energy-smart site lighting.
- Materials should be chosen from local sources, low-emitting, or composed of recycled and recyclable materials.
- Construction methods should be specified to be sustainable in nature particularly considering the recycling of all construction waste as possible.
- All new building design should focus on creating the most environmentally friendly facility possible.
A Introduction

The Lamar State College - Orange campus is located in the central business district of Orange, Texas. Most of the campus buildings are located in a centralized area, defined by the four square blocks (between Green Avenue, Front Street, 2nd Street and 4th Street). The existing buildings in this central area and future buildings in the two square block area to the east are the focus for this report.

The campus is focusing its master plan within this area. The long term plan consists of replacing most existing buildings with new buildings. Some new buildings and/or building expansions will take place within the short-term (less than 5 years) and other buildings will be built in the long-term (more than 10 years). In this report, the project is grouped into two phases: buildings occurring in the short-term (“Phase I”) and buildings occurring the long-term (“Phase II”). A matrix summary of all of these buildings, existing and future, is included in Appendix A.

The purpose of this report is to identify what changes should be made to the campus’ central chilled water and power systems, to support these development phases. The “Existing Conditions” section describes these systems at the present time. The “Chilled Water and Power systems’ analysis”, details the design considerations, for these systems. Based upon this analysis, a “Recommendations” section concludes the report.
B EXISTING CONDITIONS

Chilled Water Distribution

The existing chilled water (CHW) production and distribution system consists of three (3) 250-ton chillers, circulating water through the campus by a variable-primary pumping scheme. There are three, 25 horsepower, variable-speed, chilled water pumps, each one designed to circulate 600 gpm of water against 120 ft. of head.

Three cooling towers on a common manifold provide heat rejection for the chillers. Condenser water (CDW) is circulated through the chillers via three (3) 20 horsepower, in-line, and condenser water pumps.

All of the above equipment, and other associated auxiliaries (including the expansion tank, chemical feeder, refrigerant monitor, alarm, and emergency exhaust fan), are all located at the campus’ Central Plant.

From the Central Plant, underground 8” chilled water supply and return pipes run to the site. The 8” and 6” CHW pipes loop around the Ron E. Lewis library. However, this configuration is based on the as-built condition in 1999, which does not show the latest piping additions from the loop to the Green Avenue building and the Wilson building (these pipes’ sizes and their exact locations to be verified). This dearth of information on this branch of the CHW loop is unlikely to affect the final, suggested underground pipe configurations because they serve a remote area that will likely not survive in long-term plan.

Six existing buildings are served by this chilled water distribution system:

- Student Center
- Ron E. Lewis Library
- Academic Center
- Allied Health Building
- Green Avenue Building
- Wilson Building

The gross square foot area of floor space in these buildings is 188,500 square feet.

The chilled water pipes are tapped from the underground main lines, and routed into the buildings for CHW service to air handling units. There are chilled water pumps at two of the buildings (Green Avenue and Wilson), designed to boost the CHW flow from the loop into the building. LSCO maintenance personnel do not believe that these pumps are actually necessary because chilled water loop pressure is sufficient to push flow through these buildings. It is indeed possible that when these pumps operate, they can actually “over pump” the building, drawing more CHW from the loop than necessary. There are two-way chilled water valves serving the air handling units throughout the campus.

The campus’ chilled water system is monitored and controlled by a building automation system (BAS) (Automated Logic). The front end of the BAS is located in the Physical Plant (adjacent to the Green Avenue Building). The monitoring and control includes many data points, including entering and leaving water temperatures at the chillers, gpm chilled water flow (and tons of cooling) provided by the chillers, at any time.

Power Distribution

Currently, there are several electrical accounts, meters and services which serve the buildings comprising the LSCO campus. One of the primary purposes of the utility master plan is the consolidation of campus buildings, both geographically and in terms of utilities. To this end, the
focus of this study is the inclusion of future campus build-out power service into the existing centralized electrical service. Detailing of buildings not currently served from this system (The Physical Plant Building, Wilson Building and Green Avenue Building) will not be considered in this study as they are already independently served and are slated for vacation in the master plan.

The current centralized electric service is served by dual feeders from a nearby Entergy Substation which also serves the ship repair yard to the east of campus. The service comes into the Central plant building from the east and does not appear to be encroaching on any area slated for building build-out (it crosses the soccer field proposed in Option 3B).

The 13.2 kV service enters the north side of the Central Plant and is routed beneath the building to two 2,500 kVA transformers which drop the voltage to 480V, 3-phase for distribution to the buildings. The secondary side of each transformer powers each side of the bus of the 4,000-amp main switchboard SWB1. This switchboard configuration is “main-tie-main” with separate meters on main. The tie breaker is normally opened with both sides of the switchboard operating from a separate transformer. In the event of a transformer or primary feed failure however, the entire campus could be served from a single one of the 2,500 kVA transformers. The mains on this switchboard are “outboard” (on the outside ends of the switchboard).

From SWB1, circuit breakers serve the various building and central plant loads. The Five buildings current powered from SWB1 include:

- Student Center
- Ron E. Lewis Library
- Academic Center

- Allied Health Building
- Central Plant

The combined gross square footage of these buildings is 156,935 square feet.

There is currently no building level monitoring or metering of electrical power coming through SWB1.

The campus main switchboard is served from the nearby Front Street Substation. Entergy has no current plans for any major changes at this substation. Power is fed to the substation by three overhead 69kV transmission lines which power two 9375kVA transformers (69kV to 13.2 kV). There are five overhead and at least two underground feeders coming from this substation at 13.2 kV. The two known underground feeders serve LSC-Orange. There is evidently no charge to LS
c to remove electrical services to existing building that may be acquired and demolished, but if removal of overhead transmission lines or removal/relocation of overhead distribution lines is necessary to prep the far eastern zone of the master plan area for development, there will be significant cost involved.

Assuming that routes, permitting and PUCT approvals could be obtained, relocation of all overhead transmission and distribution lines would cost LS
c approximately $2 million. Entergy's estimate did not include an assessment of exactly which feeders or transmission lines might encroach into the master plan area so the $2 million should be conservative (assuming all must be relocated).
C. CAPACITY ANALYSIS

Chilled Water System

The existing Central Plant’s design incorporated “N+1 redundancy”. There was one extra machine set (chiller, chilled water pump, cooling tower cell, and condensing water pump), in the chilled water production system. The individual machine capacities are 250-tons (chiller), 25 horsepower (CHW pump), 750 gpm & 3,750,000 BTUH (cooling tower capacity), and 20 horsepower (CDW pump).

The redundancy is also observed from the historical operations of this equipment. The Plant’s Director, Meinrad Fillop, recounted that no more than two (2) chillers have operated simultaneously, during the past eight years.

From this fact, it is estimated that the maximum cooling load on the central chilled water system, does not exceed two chillers’ capacities or 500 tons. In actuality, the peak cooling load may be significantly less than 500 tons.

Since there are 188,500 gross square feet on the campus, that is served by this chilled water, the area-to-load index is 188,500 sq. ft. / 500 tons = 376.9 sq. ft. / ton. Because the load may actually be somewhat less than 500 tons, this index is conservative but is in the range of expectation for similar facilities. Better approximations of the CHW plant’s peak load and load profile would help to fine-tune these recommendations, but will not significantly alter the underlying approach.

It is assumed that each new building’s cooling load, will follow this approximate index, for maximum-cooling. It is also assumed that all new buildings to the campus will be on this same central chilled water distribution system.

Power Distribution System

In similar fashion to the LSC-O’s chilled water system, the electrical distribution system incorporates “N+1 redundancy”. Though both primary transformers are online at a given time, the tie-breaker-equipped main switchboard can be quickly switched to take power exclusively from either transformer. Even at peak load (866 kVA recorded in June of 2007), the transformer is only loaded to 35% of its rated capacity. When one considers that electrical codes typically allow transformer loading up to 150% rated capacity, one could say that the existing load is only 23% of capacity. Either way, this translates into a potential increase of three to four times existing load before existing spare capacity is expended and N+1 redundancy is negated. In essence, there are no scenarios suggested by the master plan that would conceivably require major upgrade of the existing campus electrical system. Only expansion of the distribution system (duct bank) to create pathways to the new buildings and shuffling of the switching configuration in the main switchboard are anticipated. The expansion of the number of parking lots and how the parking lot lighting would impact campus load was a concern of the Owner, but LAN does not believe that it will significantly impact the overall campus electrical load, as this load generally occurs as other loads (interior lighting and plug load, HVAC, etc.) is decreasing.

The other consideration for electrical distribution system expansion is space or slots for the circuit breakers within the switchboard to serve the added loads. Review of this consideration using the actual shop drawings of SWB1 dispelled this concern. There will be an additional four loads associated with chiller plant expansion and an additional five building...
loads brought on line in future phases and it appears that all can be accommodated by the existing switchboard with no footprint additions.

Development Phases

Phase I

The Vocational Building (approx. 20,000 sq. ft.) is added during this phase.

Chilled Water

This increase in square-footage served by the central chilled water system, results in an approximate load increase of 93 tons. The total gross area is 223,395 square feet and the total maximum load is 593 tons.

Power

In keeping with the consolidation of campus electrical loads into the central plant switchboard, this building will increase the switchboards electrical load by approximately 161 kVA to a total of 1,027 kVA.

Phase II

The New Multipurpose Building (ABII), New Student Center, and New Health Services building (ABIII) and a fourth building (function TBD) are added in this phase. These new buildings' total areas is estimated at 215,000 SF.

Chilled Water

This net increase in square-footage to the Phase I campus plan, results in an approximate increase of 570 tons to the existing chilled water system. The total gross area served by the central chilled water system would be 438,395 square feet and the total maximum load is 1,163 tons.

Power

This net increase in square-footage to the existing campus plan, results in an approximate increase of 986 kVA to the Phase I electric service. In addition, the increase in square footage will precipitate an expansion of the central plant further increasing the electrical load by another 400 kVA. The total gross area served by the central electrical switchboard would be 438,395 square feet and the total maximum load is 2,413 kVA.

CHW Plant Expansion

Every option has a net increase in gross floor area, and thus, a theoretical increase in cooling load upon the central chilled water system. However LAN is of the opinion that, due to the uncertainty of the exact peak CHW plant load and the potential for load reduction measures yet undertaken, no CHW plant expansion need be undertaken for this phase. The Vocational Building should be able to be served from the existing 8” CHW mains with 4” taps and service.

The existing pipe sizes are sufficient for the existing gpm and buildings served. The new buildings located in the northern and eastern areas of the master plan will be served by a parallel CHW loop that will not significantly influence flows in the existing loop. Spare capacity for additional gpm or conversely lower flows and less energy expense can be generated in the existing loop, provided that the operating philosophy, future air handler selection, and perhaps even existing air handler CHW coil retrofits can increase the temperature split of the CHW distribution loop. Currently the design of the system is for a 10 deg. F temperature split. This split limits the current distribution main to approximately 500 tons. However, if the CHW plant is operated at colder supply temperatures, and air handlers are selected for design temperature splits of 14 to 18 deg. F, the existing mains would accommodate 700 to 900 tons. The addition of a parallel set
of 8" mains leaving the CHW plant to serve the northern and eastern CHW loads for the campus will serve well into the second half of the century.

Because of the parallel configuration of the new CHW loop, the Existing CHW and CDW pumps will likely not need any significant upgrade or modification, other than perhaps controls to integrate the operations of the parallel plants. The description of the new CHW plant is in the Recommendations section of this report.

Electrically, with the capacity of the system being more than adequate for all foreseeable needs, distribution is the only issue. Existing ductbank with adequate capacity for future appear to be in place on the west part of the site, but with the concentration of new buildings on the central and east portions, a new duct bank running east from central plant to a manhole near the proposed technology building would provide the backbone needed to support further growth (see sketch of proposed duct bank).

D RECOMMENDATIONS

The following recommendations are based on the analyses of the chilled water and power distribution systems.

1. Incidental CHW System Recommendations

These recommendations can be immediately undertaken with no consideration of the campus master plan and can immediately improve efficiency and set the stage for future CHW plant changes.

A) Eliminate secondary CHW pumps

These extra pumps, located at the air-conditioned buildings, are likely unnecessary. It has been observed that the Central Plant pumps are sufficiently-sized to circulate CHW with sufficient pressure to provide adequate flow to the AHUs in these buildings.

B) Provide DX computer room space cooling

These computer rooms experience heat loads, at all hours, throughout the year. The air-conditioning units, which serve the rooms, are served by the central chilled water distribution system. Consequently, the cooling system (chiller, cooling tower, and pumps) has to operate, even if there is no other cooling load on campus. In order to save cost in operating equipment, it is recommended that the existing air-conditioning units be replaced by Computer-Room Air Conditioning units that have both CHW and DX cooling capability as well as the ability to sense that the CHW loop is not in service. This load flexibility should also aid the recommendations for Phase I. These existing systems should also be analyzed to determine the tonnage savings that is credited to the central system (because the load is removed from the central system). The estimated cost for this upgrade is $172,726 (see attached cost estimate).

C) Quantify CHW Production Benchmarks

The peak load estimates which form the basis of this study is the best information available but is still suspect. A concerted effort should be undertaken in the next year to accurately determine the peak CHW Plant load and CHW load profile. These parameters will provide a good basis of design for the CHW Plant expansion, as well as provide a guide for more efficient CHW Plant operation in the near term.

2. Provide additional cooling capacity and electrical distribution capability:

A) Phase I (increase of approximately 34,940 sq. ft. and 93 tons)
The maximum load in this phase is 593 tons, which is a modest increase over the existing capacity. Load-reduction strategies can take many forms but should focus on load reduction as opposed to energy savings strategies (e.g., window film). Retro-commissioning would also likely reveal easily correctable system issues that could significantly reduce cooling load seen at the CHW plant.

In LAN’s opinion, this modest increase in load does not warrant any plant capacity increase. We believe that efficiency, operational and equipment improvements should easily be able to absorb such a small increase.

Additional cooling capacity is not recommended for Phase I. The cost at this phase is difficult to determine, but should not exceed at approximately 25% of the cost of a new chiller, or approximately $250,530 (see attached cost estimate).

Electrically, the Vocational Building will require the installation of a new circuit breaker in switchboard SWB1 and feeders being run to it. This expense should be largely incurred under the construction cost of the Vocational Building, but one cost that might be “shared” with the utility master plan is a new duct bank and two new manholes to both supply the Vocational Building and set the stage for Phase II growth to the north. The cost of this 200-foot duct bank extension is estimated at $38,211 (see the attached cost estimate).

The total estimate cost of utility infrastructure improvements needed for this phase in 2008 dollars is $288,741.

B) Phase II (increase of approximately 215,000 square feet and 570 tons over Phase I CHW Plant capacity)

Addition of any of the Phase II facilities will necessitate the installation of more chiller capacity to maintain N+1 redundancy. The expansion recommended is two 400-ton chillers and associated auxiliaries. One of these chillers should be equipped with a variable-frequency drive to better accommodate low loads and to save energy during off-peak times. A 1,500 sq. ft. addition to the CHW plant will need to be made as well as expansion of the mechanical courtyard to accommodate a new cooling tower.

Alternately, the new cooling towers could go on the roof of the addition. As mentioned previously, the existing CHW plant will not require major modification.

The installation of two smaller chillers versus one larger one impacts the N+1 redundancy but also offers flexibility in case the Phase II building additions do not happen in rapid sequence.

The approximate cost (for design and construction) of this option is $2,257,024 (see attached cost estimate).

Electrically, the Phase II buildings will require new circuit breakers be installed in empty slots and some load shuffling at switchboard SWB1. This expense should be largely incurred under the construction cost of each building, but one cost that should be “shared” with the utility master plan is a new duct bank and three new manholes to both supply Phase II growth to the north and loads on the Far East end of the master plan area. The cost of this 600-foot duct bank extension is estimated at $98,990 (see the attached cost estimate).

The total estimate cost of utility infrastructure improvements needed for this phase in 2008 dollars is $4,817,482.
<table>
<thead>
<tr>
<th>Item #</th>
<th>Building Name</th>
<th>Address</th>
<th># of Floors</th>
<th>Existing</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Student Center</td>
<td>407 Green Ave.</td>
<td>2</td>
<td>30,060</td>
<td>45,000</td>
<td>45,000</td>
</tr>
<tr>
<td>2</td>
<td>Green Avenue Building</td>
<td>418 Green Ave.</td>
<td>1</td>
<td>17,320</td>
<td>17,320</td>
<td>17,320</td>
</tr>
<tr>
<td>3</td>
<td>Wilson Building</td>
<td>300 N. 4th Street</td>
<td>1</td>
<td>14,200</td>
<td>14,200</td>
<td>14,200</td>
</tr>
<tr>
<td>4</td>
<td>Ron E. Lewis Library</td>
<td>290 N. 4th Street</td>
<td>3</td>
<td>46,825</td>
<td>46,825</td>
<td>46,825</td>
</tr>
<tr>
<td>5</td>
<td>Academic Center (ABI)</td>
<td>410 Front Street</td>
<td>2</td>
<td>50,000</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>6</td>
<td>Allied Health Building (including Central Plant)</td>
<td>302 Front Street</td>
<td>2</td>
<td>30,050</td>
<td>30,050</td>
<td>30,050</td>
</tr>
<tr>
<td>7</td>
<td>Vocational Building</td>
<td>-</td>
<td>1</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>8</td>
<td>Academic Building II (ABII)</td>
<td>-</td>
<td>2 or 3</td>
<td></td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>New Multipurpose Building</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
<td>45,000</td>
</tr>
<tr>
<td>10</td>
<td>Academic Building III (ABIII)</td>
<td>-</td>
<td>2 or 3</td>
<td></td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Academic Building IV</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>188,455</td>
<td>223,395</td>
<td>438,395</td>
</tr>
</tbody>
</table>

Projected Cooling Load (tons)

<table>
<thead>
<tr>
<th></th>
<th>Existing</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>593</td>
<td>1,163</td>
</tr>
</tbody>
</table>

Cooling Load Index (GSF per ton) = 376.9

Projected Electrical Load (kVA)

<table>
<thead>
<tr>
<th></th>
<th>Existing</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>866</td>
<td>1,027</td>
<td>2,015</td>
</tr>
</tbody>
</table>

Electrical Load Index (GSF per kVA) = 217.6
CONSTRUCTION COST ESTIMATE
Retro-Commissioning and Controls Upgrade

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item Description</th>
<th>Quantity</th>
<th>Material</th>
<th>Labor</th>
<th>M&L Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>Unit</td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td>1</td>
<td>LAN Estimate Conduct Deficiency Assessment</td>
<td>188,455</td>
<td>SF</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>LAN Estimate Conduct Retro-Commissioning</td>
<td>188,455</td>
<td>SF</td>
<td>$0.00</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>LAN Estimate Misc Controls Upgrades</td>
<td>188,455</td>
<td>SF</td>
<td>0.33</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td></td>
<td>$62,190.15</td>
<td>$113,073.00</td>
</tr>
<tr>
<td></td>
<td>City Cost Index</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>$62,190.15</td>
</tr>
<tr>
<td></td>
<td>OH & Profit</td>
<td></td>
<td></td>
<td>15.0%</td>
<td>$9,328.52</td>
</tr>
<tr>
<td></td>
<td>Means Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Cost Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance Bond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soft Costs (Engineering/Planning)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEOA DAILY
CONSTRUCTION COST ESTIMATE

Vocational Building Duct Bank Extension

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item Description</th>
<th>Quantity</th>
<th>Material</th>
<th>Labor</th>
<th>M&L Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>Unit</td>
<td>$/Unit</td>
<td>Total</td>
</tr>
<tr>
<td>Means 1</td>
<td>Earthwork (4' wide, 3' deep trench, backfill and compact)</td>
<td>200</td>
<td>LF</td>
<td>1.78</td>
<td>$356.00</td>
</tr>
<tr>
<td>Means 2</td>
<td>Underground Duct Bank (6 @ 5" dia)</td>
<td>200</td>
<td>LF</td>
<td>15.65</td>
<td>$3,130.00</td>
</tr>
<tr>
<td>Means 3</td>
<td>Concrete for Underground Duct Bank</td>
<td>35</td>
<td>CY</td>
<td>120.00</td>
<td>$4,200.00</td>
</tr>
<tr>
<td>Means 4</td>
<td>Reinforcement</td>
<td>2</td>
<td>tons</td>
<td>935.00</td>
<td>$1,870.00</td>
</tr>
<tr>
<td>Means 5</td>
<td>Manholes</td>
<td>2</td>
<td>each</td>
<td>1,475.00</td>
<td>$2,950.00</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>City Cost Index</td>
<td></td>
<td></td>
<td>96.8%</td>
<td>$12,355.03</td>
</tr>
<tr>
<td></td>
<td>OH & Profit</td>
<td></td>
<td></td>
<td>15.0%</td>
<td>$1,853.39</td>
</tr>
<tr>
<td></td>
<td>Means Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Cost Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance Bond</td>
<td></td>
<td></td>
<td>5%</td>
<td>$1,061.43</td>
</tr>
<tr>
<td></td>
<td>Soft Costs (Engineering/Planning)</td>
<td></td>
<td></td>
<td>15%</td>
<td>$3,184.30</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td></td>
<td></td>
<td>50%</td>
<td>$12,737.19</td>
</tr>
<tr>
<td></td>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEO A DAILY
CONSTRUCTION COST ESTIMATE

CHW Plant Expansion

Project: LSC-Orange Master Plan
Facility: Central Plant
Location: Orange, TX

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item Description</th>
<th>Quantity</th>
<th>Material</th>
<th>Labor</th>
<th>M&L Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>Unit</td>
<td>$/Unit</td>
<td>Total</td>
</tr>
<tr>
<td>Means 1</td>
<td>CHW Plant Addition Building</td>
<td>1500</td>
<td>SF</td>
<td>56.00</td>
<td>$84,000.00</td>
</tr>
<tr>
<td>Means 2</td>
<td>Provide and Install 400-ton Chiller</td>
<td>2</td>
<td>each</td>
<td>141,000.00</td>
<td>$282,000.00</td>
</tr>
<tr>
<td>Means 3</td>
<td>Provide and Install CHW Pumps</td>
<td>2</td>
<td>each</td>
<td>16,800.00</td>
<td>$33,200.00</td>
</tr>
<tr>
<td>Means 4</td>
<td>Provide and Install CHW Pump VFDs</td>
<td>2</td>
<td>each</td>
<td>7,900.00</td>
<td>$15,800.00</td>
</tr>
<tr>
<td>Means 5</td>
<td>Provide and Install CDW Pumps</td>
<td>2</td>
<td>each</td>
<td>16,800.00</td>
<td>$33,200.00</td>
</tr>
<tr>
<td>Means 6</td>
<td>Provide and Install 400-ton Cl₃ Tower</td>
<td>2</td>
<td>each</td>
<td>51,000.00</td>
<td>$102,000.00</td>
</tr>
<tr>
<td>Means 7</td>
<td>Earthwork (4' wide, 3' deep trench, backfill and compact)</td>
<td>1200</td>
<td>LF</td>
<td>1.78</td>
<td>$2,136.00</td>
</tr>
<tr>
<td>Means 8</td>
<td>Distribution Piping (6" CHW)</td>
<td>500</td>
<td>LF</td>
<td>151.20</td>
<td>$136,080.00</td>
</tr>
<tr>
<td>Means 9</td>
<td>Distribution Piping (6" CHW)</td>
<td>300</td>
<td>LF</td>
<td>222.00</td>
<td>$66,600.00</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td></td>
<td></td>
<td>$755,016.00</td>
</tr>
<tr>
<td></td>
<td>City Cost Index</td>
<td></td>
<td></td>
<td></td>
<td>99.8%</td>
</tr>
<tr>
<td></td>
<td>OH & Profit</td>
<td></td>
<td></td>
<td></td>
<td>15.0%</td>
</tr>
<tr>
<td></td>
<td>Means Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAN Estimate Plant Piping (CHW and CDW)</td>
<td>800</td>
<td>tons</td>
<td>250.00</td>
<td>$200,000.00</td>
</tr>
<tr>
<td></td>
<td>LAN Estimate Plant Electrical</td>
<td>800</td>
<td>tons</td>
<td>140.00</td>
<td>$112,000.00</td>
</tr>
<tr>
<td></td>
<td>LAN Estimate Plant Controls</td>
<td>800</td>
<td>tons</td>
<td>80</td>
<td>$64,000.00</td>
</tr>
<tr>
<td></td>
<td>Construction Cost Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance Bond</td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Soft Costs (Engineering/Planning)</td>
<td></td>
<td></td>
<td></td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td></td>
<td></td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONSTRUCTION COST ESTIMATE

East Campus Duct Bank Extension

Project: LSC-Orange Master Plan
Facility: Campus
Location: Orange, TX

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item Description</th>
<th>Quantity</th>
<th>Material</th>
<th>Labor</th>
<th>M&L Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>Unit</td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td>Means 1</td>
<td>Earthwork (4" wide, 3" deep trench, backfill and compact)</td>
<td>600</td>
<td>LF</td>
<td>1.78</td>
<td>4.69</td>
</tr>
<tr>
<td>Means 2</td>
<td>Underground Duct Bank (6 @ 5" dia)</td>
<td>600</td>
<td>LF</td>
<td>15.65</td>
<td>14.60</td>
</tr>
<tr>
<td>Means 3</td>
<td>Concrete for Underground Duct Bank</td>
<td>100</td>
<td>CY</td>
<td>120.00</td>
<td>65.56</td>
</tr>
<tr>
<td>Means 4</td>
<td>Reinforcement</td>
<td>6</td>
<td>tons</td>
<td>935.00</td>
<td>625.00</td>
</tr>
<tr>
<td>Means 5</td>
<td>Manholes</td>
<td>3</td>
<td>each</td>
<td>1,475.00</td>
<td>1,310.00</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City Cost Index</td>
<td></td>
<td></td>
<td></td>
<td>98.8%</td>
<td>60.9%</td>
</tr>
<tr>
<td>OH & Profit</td>
<td></td>
<td></td>
<td></td>
<td>15.0%</td>
<td>15.0%</td>
</tr>
<tr>
<td>Means Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Cost Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Bond</td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Soft Costs (Engineering/Planning)</td>
<td></td>
<td></td>
<td></td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td></td>
<td></td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lamar State College - Orange CHW/Power Master Plan
COST ESTIMATE SUMMARY

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Project Phase</th>
<th>Implementation Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CRAC UNIT Replacement</td>
<td>Immediate</td>
<td>$172,726</td>
</tr>
<tr>
<td>2</td>
<td>Retro-Commissioning and Controls Upgrade</td>
<td>Phase I</td>
<td>$250,530</td>
</tr>
<tr>
<td>3</td>
<td>Vocational Building Duct Bank Extension</td>
<td>Phase I</td>
<td>$38,212</td>
</tr>
<tr>
<td>4</td>
<td>CHW Plant Expansion</td>
<td>Phase II</td>
<td>$2,257,024</td>
</tr>
<tr>
<td>5</td>
<td>East Campus Duct Bank Extension</td>
<td>Phase II</td>
<td>$98,990</td>
</tr>
<tr>
<td>6</td>
<td>Entergy Electrical Line Relocation</td>
<td>Phase II</td>
<td>$2,000,000</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td></td>
<td>$4,817,482</td>
</tr>
</tbody>
</table>
Appendix C – Central Plant Photos

(From left to right: condensing water pumps, chillers, chilled water pumps. North is to the right)

(Chilled Water Pumps. North is to the right)
(Condensing water pumps. North is to the right)

Generator (on the left), 3-cell cooling tower (on the right, next to Central Plant wall). North is to the right.
Generator (on the left), 3-cell cooling tower (on the right, next to Central Plant wall). North is to the right.
FOCUS GROUP MEETING MINUTES

Project: Lamar State College-Orange
Campus Master Plan Update

Date: September 12, 2007

Location: Lamar State College-Orange

Copies: Dr. Shahan, William Ryan,
Reagan George, Jamie Smith,
File

MEETING 1

9:30 am: Entrance Briefing with Dr.
J. Michael Shahan,
President

Attended By:

William Ryan, Lamar State College-
Orange (LSCO)
Reagan George, Leo A Daly
Jamie Smith, Leo A Daly

1. Proposed City plan was initiated first
by the Mesa Group, a group working on
Shangri-La for the Stark Foundation.
Further work by Jeffrey Carbo will
complete the proposed downtown City of
Orange Master Plan.

2. LSCO has received a preliminary
drawing for the downtown plan which
should be updated soon.

3. MP1 is the Master Plan document for
the Texas Higher Education Coordinating
Board. It contains long terms “wants” and
CIP needs. It is open twice a year for
modifications. This document reports the
needs and progress of capital
improvement requests for Lamar State
College-Orange.

4. The Texas State University System
has started doing CIP plans using
templates developed by Broaddus and
Associates. The System CIP procedure
requires a 10 year master plan. LSCO did
a CIP last year. The process requires

annual review each November. This year
it will be done without the new campus
Master Plan. At the May 2008 Board
Meeting the new Campus Master Plan
may be presented. The November 2008
CIP will be updated to reflect the new
Campus Plan. New and updated
planning instruments will be used to
prepare for the January 2009 legislative
session.

5. The City wants mixed usage so they
would like to keep the Capital One bank
in place.

6. Campus Expansion possibilities:

7. West – stable properties (other than
bank). Drawing should go to 9th Street.

8. Northwest – City would like LSCO to
look at the possibility of the Baptist
church leaving. The Church has
additional property elsewhere. The LAD
team needs to determine if there is a
viable use for the Sanctuary and
classroom buildings. Would the sanctuary
work for performance art? It has a sloped
floor. The Lutcher Theatre continues their
initiatives. Community Theatre also may
be a good partner.

9. East – Lots of opportunity for
acquisition. Drawing should go to
Simmons.

10. North – Drawing should go to Pine
Street.

11. South – Drawing should go one
street past Division and include Hotel.

12. Drawing should show the existing
physical plant building.

13. A new vocational building could go
on the east side; LSC-PA has one that is a
metal building with EIFS painted to look
like the campus buildings. It contains
some large sectioned off classrooms that
are air-conditioned and the rest is not. It
should be close to campus so it was easier to manage and on central plant and IT systems.

14. Since Rita LSCO has lost students. There are lots of job opportunities in the area, mostly construction and industrial. So the graduates take jobs instead of going to school. LSCO reports enrollment of 2150 in fall of 05, 2011 fall of 06, and 1983 fall of 07. But summer 2007 was the best enrollment ever. 12% of students are from Louisiana.

15. The community is developing a new scholarship program that encompasses the West Orange and LCM school districts. Once operational, the program will guarantee four years of college tuition at any school in Texas. Many will attend LSC-O. This program starts in the fall of 2008. Students can get basic classes out of the way at LSCO without paying for housing and then transfer.

16. The President hears a lot about the need for skilled labor training but is skeptical about how many kids would really want those kinds of jobs and would want to work that hard.

17. They are interested in a green space that could be a buffer between the school and the industrial area to the east. The ship yards are currently doing a great business. They have reoccupied buildings that have been empty for 15 years.

18. Allied Health was built in 1909 as a wholesale grocery.

19. Wilson Building was a dry goods store.

20. Academic Building was a bowling alley.

21. Student Center was a Western Auto store.

MEETING 2

11:00 AM – Entrance Briefing with Dr. J. Michael Shahan, President

Attended By:

Kevin Doss, Liberal Arts (Speech, Communications, Theatre, Debate)

Jim Ellis, Business and Technical Programs

Lori LeBlanc, Nursing and Allied Health Program

Kathryn Rector, Liberal Arts (English/Speech/Writing/Reading)

Robyn Senter, Math and Sciences

Larry Wilmore, (Chair, Faculty Senate) Math and Sciences

Sandy Ludwig, Staff Advisory Council (Brown Center)

Stephanie Jones, Staff Advisory Council (Student Services)

Phyllis Crew, Staff Advisory council (Allied Health)

Agenda will be to go through categories of the previous master plan. These were:

1. Identity
2. Vehicular Circulation and Parking
3. Pedestrian Circulation
4. Space Needs
5. Utilities
6. Architectural Development
7. Site Development
Discussion:

Identity
1. Cornerstones and markers help the campus identity a lot but there are none on Front St. or on Wilson Building. The buildings on the north side of Green Ave. are not marked except on the buildings themselves.
2. Don't like having space north of Green Ave.
3. They were not sure what graphic is on the Green Ave. Building. This corner doesn't match.
4. The fronts of those buildings look different than the campus.
5. They maybe should acquire the SW corner (bank) and make it look the same
6. The school uses the surplus parking at the bank, the public library and the Baptist Church.

Vehicular Circulation and Parking
1. There is not enough parking
2. Some people park in the City Library lot or at the bank.
3. The library is now towing cars near the building in the no parking zone.
4. At the Wilson Building, some people are parking in front of other cars and blocking them in rather than walking one block.
5. Some community groups meet at the Wilson Building
6. Do students know where they should park? Find a way to tell them the rules.
7. They question if they have enough handicap spaces. Currently at the Health Sciences Building they have 3 spaces but 4 handicapped parkers. This may be just a distribution problem.

Pedestrian Circulation
1. TX Dot took out the traffic light at 4th and Green. Now it is very hard to get across.
2. There are students crossing in the middle of block (jay walking) across from student center.
3. Maybe they should add a diagonal pedestrian safety zone from Student Center to Wilson Building.
4. Maybe they need two stop signs – one at Wilson Building and one at Green Ave. TX DOT won't allow that.
5. Maybe install speed bumps.
6. President believes that this issue is totally dependent upon TxDot for a solution.
7. Sidewalks are still in good shape.
8. There are no "hand-made" paths through the grass.

Space Needs
1. Allied Health Needs – see attached for additional requests:
2. A large classroom for 80 students. They have more applicants than they can accept. This has been the case since 1981. All classes are full. They can not be all together at the same time. Classrooms are used 40 hours – even afternoons. A room for 66 is the largest in the building.
3. They need bigger offices for some staff. There is no privacy. It is very crowded. No room for visitors.
4. They need file space.
5. They need classroom space. They are juggling classes. #206 is EMS only. They hold classes in the two computer labs. This is very distracting because the students look over the computers or play
on them. One temporary solution might be computer tables that the computers fold down and out of the way.

6. Need more computer labs.

7. Need more faculty offices. Adjunct faculty is now 3 to an office.

Science Needs:

1. Dedicated science and math building. Then turn the Academic Building into a Liberal Arts building.

2. Microbiology has 104 students.

3. They need two lecture halls for 60-64 students.

4. A dedicated general biology lab – no sharing.

5. A dedicated chemistry lab with fire suppression and other equipment

6. A dedicated microbiology lab.

7. Dedicated anatomy and physiology labs, dedicated for each semester section 2401 and 2402.

8. A dedicated medical technology lab where equipment can be left out.

9. Central to all labs should be a large prep area or duplicate prep areas for 2 lab types. Keep equipment and models in one area, all hazardous items in another.

10. Need one computer lab or two if they have math included.

11. One building dedicated to developmental programs – math, science and literacy. This could be in the math building.

12. They need a lot more classrooms.

13. Only 15 minutes between classes is not enough time for teachers to knock down equipment in shared labs.

14. Students can not get in and check on lab experiments when the room is being used for another class.

Performing Arts Needs:

1. A new performing arts center

2. Theatre to seat 500

3. Black box theatre adjacent with 150 seats.

4. Center to have classrooms and offices.

5. A lab for technical theatre and stage construction

6. A lab for costume design

7. A dedicated speech room with individual practice rooms.

8. Speech has 240 students, theatre has 121. They are one class short of being able to offer an associate degree in theatre.

9. They need two classrooms for 30

10. They need two classrooms for 60

11. Currently they have no equipment for costume design. They want to offer the class but they don’t have room. Port Arthur has the facility but they don’t want to do it.

12. They want the new building on the empty lot NE corner of campus.

Utilities

1. No comments

Architectural Development

1. Make Wilson Building and Green Ave. Building look more a part of the college.

2. Find a way to absorb the United States Congressman’s office space.
3. The College should not go too far to the west.
4. To the north you get into a bad area.
5. If they could take two blocks to each then close Main and Second Streets.
6. Campus is well lit at night.

Went around table and took comments

Kevin:
1. We should grow to the east.
2. Be more accessible for the community
3. Don't grow so far that we are not pedestrian friendly (not to far east).
4. Core classes in an easily accessible place
5. Take special classes to the edge of campus.

Lori LeBlanc:
6. If the campus grew east it would make an ugly area prettier.
7. To the west you can only go one block.

Kathy:
8. Going two blocks to the east would really improve that area.

Larry:
9. He hates the idea of having to cross Green Ave.
10. Going to the east seems logical.
11. The east area needs to be cleaned up.
12. Need to watch the distances for time between classes.
13. Brown Center:
14. Classrooms should be better
15. Take the campus two blocks east and two blocks west.

Lori LeBlanc:
16. Going east would be ideal - it would clean it up.
17. It would be closer for Louisiana students who come over.

Jim:
18. The campus should tie in with the Lutcher Theatre - go all the way to the theatre.
19. It would be nice to have signage on all corners.
20. Maybe have 4' letters that say name of school. It is not always obvious that you are on campus from the south corners.

Allied Health:
1. Nursing is the biggest program and is really short of space particularly big lecture spaces.
2. They have Pre nursing programs (RN), EMS, Dental Assistant.
3. They are looking at physical therapy as a new program but there is not enough space.

MEETING 3
1:30 AM – Student Government Representatives

Attended By:

- Jenelda Davis, Nursing program, new to school
- Chris Williamson, Freshman, natural Science major
- Kristina Manuel, Business Administration major
- Anthony Barnes, Criminal Justice major, Student Senator
Chance Reed, Student Body
President

Brian Felchak, Natural Science
major

Joe Peevey, Kinesiology major

1. Classroom size is a problem – some
are too small.

2. In the large classroom in the
academic building it is very hard to hear.
Think about putting in an audio system
with speakers.

3. Need more functional classrooms
with built in projection.

4. Classrooms are too small and
 cramped.

5. Need an event center. The Student
Center is too cramped and it is schedules
with classes. Any special event there has
to take place of a class. The
basketball goals are not left up all the
time (take them down when they have
events like prostrate screening). Student
helpers have to take the goals up and
down all the time. They are hydraulic
and it takes a while.

6. Not many kids take laptops to class.

7. Need presentation screens in every
classroom.

8. The gym in the student center and
the library has some wireless. They need
more jacks or much better wireless.

9. How about an internet café or coffee
bar with wireless?

10. They prefer individual tables in the
classrooms. Don’t like the longer tables
for 2 or 3 students.

11. Green Ave. Building is extremely hot
or extremely cold – and at the wrong
times.

12. The library and testing center are to
cold.

13. Being close to the water adds
something extra to the campus. Need to
maintain or emphasize this relationship.

14. Incorporate the campus with the
Stark house and theatres – would give
more bang for the buck.

15. Look at taking the campus southwest

16. Take campus east two blocks. Use
this as the next parking area, close to
existing parking. Use the rest for buffer.

17. Parking is worst the first couple of
weeks then it drops off.

18. Having covered walks would let
people stay dry.

19. Take campus east by two blocks.
Cover this area in grass. You could hold
physical education classes there, have
picnics, do biology labs outside.

20. You could leap north across Green
Ave and keep the campus square.

21. If they have a large green space, they
think they would play intramurals, flag
football, lots of other sports and pick up
games. Kids could go sit and study or
play Frisbee.

22. On the campus now you feel like
you should not be on the grass.

23. They might want to start sororities
and fraternities.

24. College organizations meet in their
buildings – wherever there is an empty
classroom.

25. They use the Student Center room
#202, no computer, projector, or screen.

26. People don’t notice the Wilson
Building. It doesn’t look like a college
building. There is nothing on it to
designate it as a LSCO Building.
27. Students are parking in the wrong places. They believe this is mostly because they just don’t want to walk far. At orientation they should give out a campus and parking plan.

29. There is not enough storage in the testing center.

30. They need more vending machines with healthier food.

31. They would like more food venues but they like the current food in the Student Center.

32. More classrooms with views.

MEETING 4

2:30 AM – Vice Presidents, Dean and Division Chairs

Attended By:

Bobbie Burgess, Vice President
Student Services

Dana Rogers, Vice President
Finance and Operations

Sheila Gunter, Vice President
Academic Affairs

Carla Dando, Dean of Instruction
and Interim Division Chair for Arts and Sciences

Gina Simar, Director of Allied Health

Jackie Spears, Director of Business
and Technology

Brenda Mott, Director of
Education/ACE(Accelerated Certification for Educators)

Identity

1. They should think about electronic signs with interesting messages and current events.

2. It is easy to identify the central block that is behind the markers. But they two other buildings aren’t so easy – hard to identify.

Parking

1. Is there something that can be done with Green Street? Paint the street crossing? Put a hump in the street to slow down traffic? Paint street? Paint curb?

2. Parking is a problem in places.

3. At the Wilson Building, LSCO does not own the lot to the west. Students park there but don’t want to walk around the building to the front door.

4. Students don’t want to walk any distance at all.

5. There does not appear to be enough handicap parking spaces particularly at Allied Health.

6. The orange cones at the City Library keep one row for the true library patrons. But students park there anyway. The college gives them mirror tags only.

7. Cars sometimes go down the sidewalks at the east of library accidentally.

Space Issues

1. At Allied Health, take over Fourth Street and add on to the building.

2. At Allied Health, they need a classroom for 80 (vocational nursing).

3. At Allied Health, they could take on more students.

4. At Allied Health, they need more offices, storage, skills lab, classrooms,
faculty restrooms, better plumbing. Currently using their conference room as a classroom.

5. At Allied Health, the nursing office is too small for the amount of traffic. There is no waiting space, no privacy for faculty and staff.

6. At Allied Health, need computer lab rooms. Existing are currently used as classrooms. Students hide behind computers. They want computer tables where the computer can go down below table top.

7. At Allied Health, need dedicated med lab.

8. At Allied Health, they need a bigger room for phlebotomy. Now it's just a closet of a space.

9. At Allied Health, they are thinking of adding Physical Therapy Assistant program in FY08-09 but there is no place for it to go.

10. They need a dedicated Allied Health Building and a dedicated Nursing Building.

11. At Allied Health, they need a new office for the head of the department.

12. Education Department, in the Wilson Building, is researching an early childcare center for a limited number of kids. Would need a new building.

13. They need an auditorium for big functions, like an event center. They could hold graduations there. Currently use the Lutcher Center.

Fine Art Center

1. The new Event Center should be able to have a large meeting or dinner.

2. They are using the gym now and it messes up classes. Plus the ambiance is bad.

Academic Center

1. They are running out of space.

2. Their largest classroom only seats 64.

3. The classrooms as crammed full 35-40 in a room that should hold 25-30.

4. Carla needs a new office. All offices are small.

5. They need more general classroom space.

6. The lab rooms are not appropriate to lab usage. — particularly science labs.

Technology

1. They need a separate building. They are not scattered throughout the campus.

2. They need larger computer labs. Now labs hold 24 students.

3. They have a welding grant program and need a building for it.

4. The Process Technology class got too big and moved out. They are ordering more equipment. Classroom is way too small for the class size now.

5. They also have a lab across the road. Using CISCO equipment. It is too much equipment for the room.

6. They need bigger offices.

7. They need computer storage. Their offices are closets.

8. They are looking at adding horticulture or construction.

9. They could use a building for hard trades.

SITE DEVELOPMENT

1. It would be better for the community if LSCO grew to the east. Could have “gathering” green space.
2. Continue pedestrian sidewalks

GENERAL COMMENTS

1. They would consider intramurals.

2. Lot of students come in on Simmons so that when they turn right they see the campus but not until then.

3. Student Center needs to be updated very dark.

4. Aerobics room is packed with equipment. They can't fit any more in. The room needs to be bigger.

5. The community uses the gym - it is the only place in town for a sizeable meeting.

6. Today's academic libraries have cafes with wireless. They would like to see one in the library.

7. The library lobby is wasted. It may be that it could be more functional. Acoustics are bad. There is a disconnect between the actual library space, testing and hearing center. When you enter you do not see any books and it's hard to tell where you are or where you should go. The library itself becomes just another room.

8. The lobby needs display, or a round desk, or a display case, and maybe a person at a desk.

9. Continuing Education Department is low on the totem pole. It is always looking for space. Use the Wilson building a lot but mostly they have to shuffle around.

10. We need to bring Welding to the campus.