I1.2 – Warehouse Control of Perishable Goods

Sarah Slayton, Loraine Ribon, Andrew Alvarez
Ingram School of Engineering

Problem Statement
Variability in produce shelf life and the stage of life that it arrives at CTFB, coupled with inventory control, distribution, and operational procedures, leads to produce being diverted to compost. Reducing waste will allow CTFB to supply more produce to their agencies and, ultimately, the consumers of the produce.

Project Purpose
Reduce the amount of time produce is staged at the warehouse, allowing CTFB to deliver produce with a longer remaining shelf life than before. Additionally, improved procedures should help reduce the amount of expired produce (waste) at their facility.

Objectives
- Reduce accumulated waste from expired produce.
- Generate SOP for undocumented processes.
- Validate recent implementations of JIT strategies.

Methodology
The project characteristics, data-driven quality, and overall objectives meet the criteria for the six-sigma process improvement model: DMAIC. This approach will also be the structure that allows the team to keep a check and balance system throughout every phase of the project.

Ishikawa Diagram

Pilot Route Validation

Just-in-Time strategies have been implemented with the objective of reducing the level of inventory in the warehouse and consequently delivering produce with a longer shelf life.

Mid-route Pick Up

Deadheading

Both methodologies will be analyzed for effectiveness. Recommendations will be made based off resource consumption and the new model's efficiency.

Analysis of Peak Distribution Days for Procurement Team

A comparison of daily receiving and distribution trends lines indicate high levels of variation. Recommendations for reducing the variability and minimizing compost will be studied further.

Performance Measures

<table>
<thead>
<tr>
<th>Metric: Cycle Time</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ≤ 5 days</td>
<td>1</td>
</tr>
<tr>
<td>5 < x ≤ 4 days</td>
<td>2</td>
</tr>
<tr>
<td>4 < x < 3 days</td>
<td>3</td>
</tr>
<tr>
<td>3 < x ≤ 2 days</td>
<td>4</td>
</tr>
<tr>
<td>x < 2 days</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric: Weight in pounds of produce per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>x > 10,000 lbs.</td>
</tr>
<tr>
<td>7000 < x ≤ 10,000 lbs.</td>
</tr>
<tr>
<td>3000 < x ≤ 7000 lbs.</td>
</tr>
<tr>
<td>1000 < x ≤ 3000 lbs.</td>
</tr>
<tr>
<td>x ≤ 1000 lbs.</td>
</tr>
</tbody>
</table>

Future Plans
- Make recommendations based on the data analyzed to support future scheduling, budgeting and operational decisions.
- Provide performance measures to evaluate the project success and for the CTFB to have parameters to estimate their process performance in the future.
- Generate strategies to improve the documentation and data collection carried out in the current process.

Team Members

Acknowledgements

We would like to extend special thanks for their guidance and collaboration to:
- Jeff Gonzales, CTFB Director of Operations
- Sierra Sanchez, USDA Commodity Specialist
- CTFB Warehouse Managers and Staff
- Dr. Patrick Thomas, Texas State University